微电流电解产H2O2抑制铜绿微囊藻生长研究

张雨婷, 林莉, 贾迪, 董磊, 潘雄, 刘敏, 赵良元

长江科学院院报 ›› 2023, Vol. 40 ›› Issue (9) : 24-31.

PDF(6349 KB)
PDF(6349 KB)
长江科学院院报 ›› 2023, Vol. 40 ›› Issue (9) : 24-31. DOI: 10.11988/ckyyb.20220306
水环境与水生态

微电流电解产H2O2抑制铜绿微囊藻生长研究

  • 张雨婷1,2, 林莉1,2, 贾迪1,2, 董磊1,2, 潘雄1,2, 刘敏1,2, 赵良元1,2
作者信息 +

Inhibiting the Growth of Microcystis aeruginosa by H2O2 Generated in the Electrolysis Process by Low-Amperage Electric Current

  • ZHANG Yu-ting1,2, LIN Li1,2, JIA Di1,2, DONG Lei1,2, PAN Xiong1,2, LIU Min1,2, ZHAO Liang-yuan1,2
Author information +
文章历史 +

摘要

为了探究微电流电解过程对铜绿微囊藻生长的影响,以铂钛作为阳极,碳黑聚四氟乙烯(C/PTFE)气体扩散电极为阴极,在微电流电解体系中可产生对铜绿微囊藻生长具有选择性抑制作用的活性物质H2O2。探究不同电解时间、电流密度和气体流量对藻细胞生长的影响,结果表明:微电流电解的最佳条件为100 mL细胞密度为5×105个/mL 的藻液在10 mA/cm2的电流密度下以0.4 L/min的气体流量电解60 min。藻细胞光密度OD680从0.035降至0.003,表明藻细胞的生长完全受到抑制。测定电解处理前后藻细胞的叶绿素荧光参数Fv/FmY(Ⅱ)、Y(NO)等可知,电解处理后藻细胞的光合作用机制已遭到完全破坏。测定电解过程中产生H2O2的质量浓度为79 mg/L,并且经过6次循环实验后,C/PTFE气体扩散电极产生H2O2质量浓度仍为首次使用产生H2O2质量浓度的66%(52 mg/L),说明C/PTFE气体扩散电极的稳定性良好,具有较大的应用前景。该研究可为微电流电解抑制蓝藻水华提供新手段。

Abstract

Platinum titanium served as the anode, while a carbon black polytetrafluoroethylene (C/PTFE) gas diffusion electrode was utilized as the cathode in order to facilitate the production of H2O2 through low-amperage electrolysis, with the aim of inhibiting the growth of Microcystis aeruginosa. Through a series of experimental investigations involving varying electrolysis time, current density, and gas flow, the optimal conditions for inhibiting Microcystis aeruginosa were determined. Specifically, the optimal configuration involved the electrolysis of 100 mL of 5×105 cells/mL algae solution at a current density of 10 mA/cm2 and a gas flow rate of 0.4 L/min for a duration of 60 minutes. Following electrolysis, the optical density (OD680) of the algae cells decreased from 0.035 to 0.003, indicating the complete inhibition of algae cell growth. Additionally, the measurement of chlorophyll fluorescence parameters, such as Fv/Fm, Y(Ⅱ), and Y(NO), demonstrated the substantial disruption to the photosynthetic mechanism of the algae, further indicating the complete decay of the algae population. The concentration of H2O2 generated during electrolysis was determined to be 79 mg/L. Furthermore, even after six cycles of reuse, the C/PTFE cathode maintained 66% (52 mg/L) of the initial H2O2 concentration, highlighting the excellent stability and promising application potential of the C/PTFE electrode. This study presents a novel approach to effectively inhibit cyanobacterial blooms through low-amperage electrolysis, offering a new avenue for remediation.

关键词

气体扩散电极 / 微电流 / 过氧化氢 / 铜绿微囊藻 / 抑制作用

Key words

gas diffusion electrode / low-amperage electric current / hydrogen peroxide / microcystis aeruginosa / inhibiting effect

引用本文

导出引用
张雨婷, 林莉, 贾迪, 董磊, 潘雄, 刘敏, 赵良元. 微电流电解产H2O2抑制铜绿微囊藻生长研究[J]. 长江科学院院报. 2023, 40(9): 24-31 https://doi.org/10.11988/ckyyb.20220306
ZHANG Yu-ting, LIN Li, JIA Di, DONG Lei, PAN Xiong, LIU Min, ZHAO Liang-yuan. Inhibiting the Growth of Microcystis aeruginosa by H2O2 Generated in the Electrolysis Process by Low-Amperage Electric Current[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(9): 24-31 https://doi.org/10.11988/ckyyb.20220306
中图分类号: X52   

参考文献

[1] WESTRICK J A, SZLAG D C, SOUTHWELL B J, et al. A Review of Cyanobacteria and Cyanotoxins Removal/Inactivation in Drinking Water Treatment[J]. Analytical and Bioanalytical Chemistry, 2010, 397(5): 1705-1714.
[2] 张 旭, 崔娜欣, 周 丽, 等. B-N-TiO2/Ag3PO4复合光催化材料的制备及光催化降解有害藻的研究[J]. 环境科学研究, 2021, 34(11): 2645-2654.
[3] 甘南琴, 魏 念, 宋立荣. 微囊藻毒素生物学功能研究进展[J]. 湖泊科学, 2017, 29(1): 1-8.
[4] 雷 振, 陈 荣, 王 帅, 等. 铜胁迫对铜绿微囊藻生长及产毒素的影响[J]. 环境科学学报, 2017, 37(5): 1993-1998.
[5] LI P, ZHANG L, WANG W, et al. Rapid Catalytic Microwave Method to Damage Microcystis Aeruginosa with FeCl3-Loaded Active Carbon[J]. Environmental Science & Technology, 2011, 45(10): 4521-4526.
[6] 王寿兵, 徐紫然, 张 洁. 大型湖库富营养化蓝藻水华防控技术发展述评[J]. 水资源保护, 2016, 32(4): 88-99.
[7] ANTONIOU M G, DE LA CRUZ A A, DIONYSIOU D D. Cyanotoxins: New Generation of Water Contaminants[J]. Journal of Environmental Engineering, 2005, 131(9): 1239-1243.
[8] BARRINGTON D J, GHADOUANI A. Application of Hydrogen Peroxide for the Removal of Toxic Cyanobacteria and other Phytoplankton from Wastewater[J]. Environmental Science & Technology, 2008, 42(23): 8916-8921.
[9] FAN F, SHI X, ZHANG M, et al. Comparison of Algal Harvest and Hydrogen Peroxide Treatment in Mitigating Cyanobacterial Blooms via an in Situ Mesocosm Experiment[J]. Science of the Total Environment, 2019, 694: 133721.
[10] QIAN H,YU S,SUN Z,et al.Effects of Copper Sulfate,Hydrogen Peroxide and N-Phenyl-2-Naphthylamine on Oxidative Stress and the Expression of Genes Involved Photosynthesis and Microcystin Disposition in Microcystis Aeruginosa[J].Aquatic Toxicology,2010,99(3):405-412.
[11] LIANG W, QU J, CHEN L, et al. Inactivation of Microcystis Aeruginosa by Continuous Electrochemical Cycling Process in Tube Using Ti/RuO2 Electrodes[J]. Environmental Science & Technology, 2005, 39(12): 4633-4639.
[12] 林 莉, 李青云, 黄 茁, 等. 微电流电解对铜绿微囊藻的持续抑制研究[J]. 华中科技大学学报(自然科学版), 2012, 40(10): 87-90.
[13] 冯 璁, 林 莉, 李青云. 氯离子浓度与电流密度对电解抑制铜绿微囊藻生长的影响[J]. 长江科学院院报, 2015, 32(6): 53-58.
[14] LIN L, MENG X, LI Q, et al. Electrochemical Oxidation of Microcystis Aeruginosa Using a Ti/RuO2 Anode: Contributions of Electrochemically Generated Chlorines and Hydrogen Peroxide[J]. Environmental Science and Pollution Research, 2018, 25(28): 27924-27934.
[15] DITTMEYER R, GRUNWALDT J-D, PASHKOVA A. A Review of Catalyst Performance and Novel Reaction Engineering Concepts in Direct Synthesis of Hydrogen Peroxide[J]. Catalysis Today, 2015, 248: 149-159.
[16] LIANG D, LI N, AN J, et al. Fenton-Based Technologies as Efficient Advanced Oxidation Processes for Microcystin-LR Degradation[J]. Science of the Total Environment, 2021, 753: 141809-141825.
[17] ZHOU W,MENG X,GAO J,et al. Hydrogen Peroxide Generation from O2 Electro Reduction for Environmental Remediation: A State-of-the-Art Review[J]. Chemosphere,2019,225(6):588-607.
[18] PÉREZ J F, GALIA A, RODRIGO M A, et al. Effect of Pressure on the Electrochemical Generation of Hydrogen Peroxide in Undivided Cells on Carbon Felt Electrodes[J]. Electrochimica Acta, 2017, 248: 169-177.
[19] MURAWSKI E, KANANIZADEH N, LINDSAY S, et al. Decreased Gas-Diffusion Electrode Porosity Due to Increased Electrocatalyst Loading Leads to Diffusional Limitations in Cathodic H2O2 Electrosynthesis[J]. Journal of Power Sources, 2021, 481: 228992-229001.
[20] LU X,ZHOU M,LI Y,et al. Improving the Yield of Hydrogen Peroxide on Gas Diffusion Electrode Modified with Tert-Butyl-Anthraquinone on Different Carbon Support[J]. Electrochimica Acta, 2019, 320: 134552-134565.
[21] ZHOU W, MENG X, DING Y, et al. “Self-Cleaning” Electrochemical Regeneration of Dye-Loaded Activated Carbon[J]. Electrochemistry Communications, 2019, 100(3): 85-89.
[22] 林 莉, 冯 璁, 李青云, 等. 微电流电解对铜绿微囊藻(Microcystis aeruginosa)叶绿素荧光特性的影响[J]. 湖泊科学, 2015, 27(5): 873-879.
[23] MA M, LIU R, LIU H, et al. Effects and Mechanisms of Pre-chlorination on Microcystis Aeruginosa Removal by Alum Coagulation: Significance of the Released Intracellular Organic Matter[J]. Separation and Purification Technology, 2012, 86: 19-25.
[24] SELLERS R M.Spectrophotometric Determination of Hydrogen Peroxide Using Potassium Titanium(IV) Oxalate[J]. Analyst, 1980, 105(1255): 950-954.
[25] 刘宫昊. 低Pt含量Pt/C催化气体扩散电极制备及其在锌电积中的应用[D]. 北京: 北京化工大学:46-48.
[26] TIAN J, OLAJUYIN A M, MU T, et al. Efficient Degradation of Rhodamine B Using Modified Graphite Felt Gas Diffusion Electrode by Electro-Fenton Process[J]. Environmental Science and Pollution Research, 2016, 23(12): 11574-11583.
[27] XU Y, YANG J, OU M, et al. Study of Microcystis Aeruginosa Inhibition by Electrochemical Method[J]. Biochemical Engineering Journal, 2007, 36(3): 215-220.
[28] SUN H, LIU C, GAO X J, et al. Oxygen Reduction in PEM Fuel Cell Based on Molecular Simulation[J]. Advanced Materials Research, 2010, 156/157: 432-438.
[29] 王志韩, 宋浩然, 李朝林, 等. PTFE/C三相电极氧阴极还原法生产过氧化氢[J]. 环境工程学报, 2015, 9(2):787-794.
[30] LU Y, LIU G, LUO H, et al. Efficient In-situ Production of Hydrogen Peroxide Using a Novel Stacked Electrosynthesis Reactor[J]. Electrochimica Acta, 2017, 248: 29-36.
[31] CHEN Z, DONG H, YU H, et al. In-situ Electrochemical Flue Gas Desulfurization via Carbon Black-Based Gas Diffusion Electrodes: Performance, Kinetics and Mechanism[J]. Chemical Engineering Journal,2017,307:553-561.
[32] YU X, ZHOU M, REN G, et al. A Novel Dual Gas Diffusion Electrodes System for Efficient Hydrogen Peroxide Generation Used in Electro-Fenton[J]. Chemical Engineering Journal, 2015, 263: 92-100.
[33] CHEN C, YANG Z, KONG F, et al. Growth, Physiochemical and Antioxidant Responses of Overwintering Benthic Cyanobacteria to Hydrogen Peroxide[J]. Environmental Pollution, 2016, 219(12): 649-655.
[34] 邱丽佳, 张君枝, 张艳娜, 等. H2O2氧化铜绿微囊藻致嗅物质及灭藻效应研究[J]. 环境科学学报, 2017, 37(3): 954-961.
[35] 孙玉营, 吴进怡, 柴 柯,等. 高压脉冲电场结合炭黑复合涂层对硅藻活性的影响研究[J]. 中国材料进展, 2017, 36(4):301-306.
[36] SAMUILOV V D, TIMOFEEV K N, SINITSYN S V, et al. H2O2-Induced Inhibition of Photosynthetic O2 Evolution by Anabaena Variabilis Cells[J]. Biochemistry (Moscow), 2004, 69(8): 926-933.
[37] BOUCHARD J N, ROY S, CAMPBELL D A. UVB Effects on the Photosystem II-D1 Protein of Phytoplankton and Natural Phytoplankton Communities[J]. Photochemistry and Photobiology, 2006, 82(4): 936-951.
[38] 丁丽飞, 李海燕, 白敏冬, 等. 羟基自由基快速杀灭典型水华藻的研究[J]. 中国环境科学, 2017, 37(7):2633-2638.

基金

武汉市应用基础前沿项目(2020020601012285);中央级公益性科研院所基本科研业务费项目(CKSF2021480/SH, CKSF2017062/SH)

PDF(6349 KB)

Accesses

Citation

Detail

段落导航
相关文章

/