分流量区间BMA方法在小流域暴雨山洪模拟中的应用——以官山小流域为例

刘杨合, 程磊, 张云帆, 张艳军, 卫晓婧

长江科学院院报 ›› 2021, Vol. 38 ›› Issue (9) : 21-26.

PDF(4632 KB)
PDF(4632 KB)
长江科学院院报 ›› 2021, Vol. 38 ›› Issue (9) : 21-26. DOI: 10.11988/ckyyb.20200854
水资源

分流量区间BMA方法在小流域暴雨山洪模拟中的应用——以官山小流域为例

  • 刘杨合1,2, 程磊1,2, 张云帆1,2, 张艳军1,2, 卫晓婧1,2
作者信息 +

Application of BMA Method for Dividing Flow Interval to Simulating Torrential Rain in Small Watershed: Case Study on Guanshan Small Watershed

  • LIU Yang-he1,2, CHENG Lei1,2, ZHANG Yun-fan1,2, ZHANG Yan-jun1,2, WEI Xiao-jing1,2
Author information +
文章历史 +

摘要

小流域山洪灾害具有成灾时间短、突发性强、危害性大、频次多等特点,严重威胁着区域内社会经济发展和人民群众生命财产安全。受当前山区雨洪资料少、产汇流机理不够完善所限,小流域的暴雨洪水模拟存在着可靠性差、精度低的问题。以我国中部秦巴山区山洪灾害典型流域官山小流域为研究对象,搜集了近期代表性较好的10场洪水,以TOPMODEL、TUWMODEL和新安江模型结果为基础,基于分流量区间BMA方法计算模型权重,提出适用于小流域的水文集合预报模型。结果显示,相比单一水文模型,分流量区间BMA方法模拟的洪峰流量、洪量和峰现时间指标的合格率可分别提高4.5%、39.7%和48.9%,为官山小流域洪水模拟提供了一种有效的模拟手段。研究成果对提高山区小流域洪水预报精度具有一定的理论意义和实践价值。

Abstract

Sudden and frequent mountain torrent disasters in small watershed feature short time and severe hazard, hence posing severe threats to regional economic growth and the safety of people's lives and property. Limited by the lack of rainfall and flood data in mountainous areas as well as the imperfect flow generation and confluence mechanism, the storm and flood simulation for small watershed is subjected to poor reliability and low accuracy. With Guanshan small watershed, a typical basin with mountain flood disaster in the Qinling-Daba Mountains in central China as a case study, we collected the data of ten representative flood events in recent years and simulated the floods with Xin'anjiang model,TUWMODEL,and TOPMODEL,respectively.On the basis of the modelling results, we calculated the weights of the aforementioned models in different intervals by using the BMA (Bayesian model averaging) method and presented a combined hydrological model suitable for small watersheds. Results demonstrated that compared with single hydrological model, the BMA method could enhance the pass rate of simulating flood peak discharge, flood volume and time of peak by 4.5%,39.7%,and 48.9%,respectively.The present research offers an effective approach for simulating the floods in Guanshan small watershed, and meanwhile is of theoretical and practical values for improving the accuracy of flood forecasting in small watershed in mountainous area.

关键词

分流量区间BMA方法 / 新安江模型 / TUWMODEL / TOPMODEL / 暴雨山洪 / 洪水模拟 / 官山小流域

Key words

BMA method for dividing flow interval / Xin'anjiang model / TUWMODEL / TOPMODEL / torrential rain / flood simulation / Guanshan small watershed

引用本文

导出引用
刘杨合, 程磊, 张云帆, 张艳军, 卫晓婧. 分流量区间BMA方法在小流域暴雨山洪模拟中的应用——以官山小流域为例[J]. 长江科学院院报. 2021, 38(9): 21-26 https://doi.org/10.11988/ckyyb.20200854
LIU Yang-he, CHENG Lei, ZHANG Yun-fan, ZHANG Yan-jun, WEI Xiao-jing. Application of BMA Method for Dividing Flow Interval to Simulating Torrential Rain in Small Watershed: Case Study on Guanshan Small Watershed[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(9): 21-26 https://doi.org/10.11988/ckyyb.20200854
中图分类号: P334.92   

参考文献

[1] 张平仓, 任洪玉, 胡维忠, 等. 中国山洪灾害防治区划初探[J]. 水土保持学报, 2006(6):196-200.
[2] 杜 俊, 任洪玉, 林庆明, 等. 山洪灾害防御研究进展[J]. 灾害学, 2019,34(2):161-167.
[3] 王洪心, 龚珺夫, 李 琼, 等. 湿润地区山区小流域水文模型应用与比较研究[J]. 南水北调与水利科技, 2020,18(4):1-11.
[4] 张亚萍, 周国兵, 胡春梅, 等. TOPMODEL模型在重庆市开县温泉小流域径流模拟中的应用研究[J]. 气象, 2008(9):34-39.
[5] 韩 培, 任洪玉, 王思腾, 等. 小尺度山洪灾害区下垫面特征分析研究:以官山河流域为例[J]. 长江科学院院报, 2020,37(7):1-10.
[6] 王以逵. 官山河两河口河段暴雨洪水顶托效应研究[C]//第三十届全国水动力学研讨会暨第十五届全国水动力学学术会议论文集(下册). 合肥,2019:582-587.
[7] 黄 艳, 张艳军, 袁正颖, 等. 水文模型在山洪模拟中的比较应用[J]. 水资源研究, 2019,8(1):33-43.
[8] DUAN Q,AJAMI N K,GAO X,et al. Multi-model Ensemble Hydrologic Prediction Using Bayesian Model Averaging[J].Advances in Water Resources,2007,30(5):1371-1386.
[9] BEVEN K J. TOPMODEL[M]//Singh V P. Computer Models of Watershed Hydrology. Colorado, USA: Water Resource Publications, 1995.
[10] 熊立华, 郭生练. 分布式流域水文模型[M]. 北京: 中国水利水电出版社, 2004, 142-143.
[11] 赵人俊. 流域水文模拟:新安江模型与陕北模型[M]. 北京: 中国水利水电出版社, 1984:1-20.
[12] 董磊华. 考虑气候模式影响的径流模拟不确定性分析[D]. 武汉:武汉大学, 2013.
[13] VRUGT J A, DIKS C G H, CLARK M P. Ensemble Bayesian Model Averaging Using Markov Chain Monte Carlo Sampling[J]. Environmental Fluid Mechanics, 2008, 8(5/6): 579-595.
[14] NASH J E, SUTCLIFFE J V. River Flow Forecasting Through Conceptual Models Part I - A Discussion of Principles[J]. Journal of Hydrology, 1970,10(3): 282-290.
[15] 刘志强. 水文观测预报技术与标准规范实务手册[M]. 西宁:宁夏大地音像出版社, 2003.
[16] 张 俊, 郭生练, 李超群, 等. 概念性流域水文模型的比较[J]. 武汉大学学报(工学版), 2007(2):1-6.
[17] 刘金涛, 宋慧卿, 张行南, 等. 新安江模型理论研究的进展与探讨[J]. 水文, 2014,34(1):1-6.
[18] PARAJKA J, MERZ R, BLÖSCHL G. Uncertainty and Multiple Objective Calibration in Regional Water Balance Modelling: Case Study in 320 Austrian Catchments[J]. Hydrological Processes, 2007, 21(4): 435-446.
[19] TIAN Y, XU Y P, ZHANG X J. Assessment of Climate Change Impacts on River High Flows through Comparative Use of GR4J, HBV and Xinanjiang Models[J]. Water Resources Management, 2013, 27(8): 2871-2888.
[20] 王 婕, 宋晓猛, 张建云, 等. 中小尺度流域洪水模型模拟比较研究[J]. 中国农村水利水电, 2019(7):72-76.

基金

科技部重点研发计划项目(2017YFC1502503,2018YFC0407202);国家自然科学基金项目(41890822,51879193)

PDF(4632 KB)

Accesses

Citation

Detail

段落导航
相关文章

/