长距离输水工程在穿越城市群时,往往需要深埋以规避地表及浅层地下的各类建(构)筑物。这种情况下盾构隧洞成为极具优势的选择方案。当这种深埋隧洞的围岩具有较好承载能力时,可以采用钢混凝土内衬与盾构组成复合衬砌,与围岩一起共同承担管道内的高内水压力。而这种隧道结构的内衬往往会发生开裂,进而改变其受力特征,此时内衬、盾构管片与围岩如何共同受力成为了工程设计的重点和难点,对此目前还没有成熟的计算方法和规程。针对钢筋混凝土受内水压开裂后的受力变形特点,提出了钢筋混凝土内衬开裂后刚度减少的等效刚度计算方法,计算在内水压力作用下复合衬砌与围岩共同作用的受力特点。结果表明:当围岩弹性模量达到2 GPa时,这种结构可以具有较好的承载能力;当围岩弹性模量达到5 GPa时,可以承担1 MPa以上的内水压力,围岩具有较好的利用价值。研究结果为盾构钢筋混凝土内衬高压输水隧洞联合受力提供了简化的计算方法。
Abstract
Long-distance water conveyance projects often need to be buried in deep to avoid surface and shallow underground structures when crossing urban agglomerations. Shield tunnels have become an advantageous option. When the surrounding rock of tunnel is of good bearing capacity, composite lining comprising reinforced concrete inner lining and shield can be adopted together with the surrounding rock to share the high water pressure inside the tunnel. In this case, cracks are often found on the inner lining, hence changing its force characteristics. The joint forces acting on inner lining, shield segments, and surrounding rock have been the emphasis and challenge for engineering design. Yet, mature calculation method or specification is still in lack. In view of the deformation characteristics of reinforced concrete subjected to internal pressure and cracking, a simplified method of calculating the equivalent stiffness of reinforced concrete lining after cracking is proposed to calculate the joint actions of composite lining and surrounding rock under internal water pressure. Calculation result indicate that such composite structure is of good bearing capacity when the elastic modulus of rock reaches 2 GPa; when the elastic modulus amounts to 5 GPa, the composite structure could bear an internal pressure over 1 MPa. Surrounding rock can be well utilized.
关键词
盾构隧洞 /
高压输水 /
钢筋混凝土内衬 /
复合衬砌 /
联合受力
Key words
shield tunnel /
high pressure water conveyance /
reinforced concrete lining /
composite lining /
joint force
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 孙佑光,王 兵. 胶东调水明渠混凝土衬砌结构破坏问题原因分析及对策[J].中国水运,2018(8): 56-57.
[2] 段文刚,黄国兵,杨金波,等. 长距离调水明渠冬季输水冰情分析与安全调度[J]. 南水北调与水利科技, 2016, 14(6): 96-104.
[3] 辛福选,朱宗河,张 华.PCCP在国内大型调水工程中的应用与发展[J].中国建材科技,2016,25(5):82-84.
[4] 李占东,黄忠佳. 大伙房水库输水工程(二期)PCCP管道工程进度管理与实践[J]. 水利发展研究,2014, 14(6): 54-56.
[5] 李 珠,刘元珍,闫 旭,等. 引黄入晋—万家寨引黄工程综述及高新技术应用[J]. 工程力学,2007(增刊2): 21-32.
[6] 郑淑秋,彭小林,胡小冲. 西江引水工程之钢管水下对接技术[J]. 广东土木与建筑,2012, 19(5): 50-52.
[7] 刘 阳,王 倩,刘 阳.引松隧洞预应力钢筋混凝土衬砌结构计算分析[J].长江科学院院报,2011,28(5):63-66.
[8] 姜小兰,吴 浪,孙绍文,等.南水北调穿黄隧洞内衬预应力锚索应力应变试验研究[J].长江科学院院报,2010,27(4):61-65.
[9] 顾金山. 输水盾构隧道技术在青草沙原水工程中的应用[J]. 净水技术,2008(5): 1-4.
[10]过镇海,张秀琴. 混凝土受拉应力-变形全曲线的试验研究[J].建筑结构学报,1988(4):45-53.
[11]黄 薇,陈 进. 带有不同配筋率的混凝土单向拉伸试验[J]. 长江科学院院报,2000,17(2): 22-24.
[12]宋 伟,袁 勇,龚 剑. 配筋混凝土抗拉性能试验研究[J]. 东南大学学报(自然科学版),32(增刊9):98-101.
[13]刘 幸,陈 震,袁志刚,等.钢衬钢筋混凝土压力管道裂缝宽度计算研究[J].长江科学院院报,2002,17(4):18-21.
[14]杨光华,李志云,徐传堡,等. 盾构隧洞复合衬砌的荷载结构共同作用模型[J]. 水力发电学报, 2018, 37(10): 20-30.
[15]MANDER J A B, PRIESTLEY M J N. Theoretical Stress-Strain Model for Confined Concrete[J]. Journal of Structural Engineering, 1988, 114(8): 1804-1826.
[16]BIRTEL V, MARK P. Parameterised Finite Element Modelling of RC Beam Shear Failure[C]∥Proceedings of the 19th Annual Worldwide ABAQUS Users’ Conference (AUC). Cambridge, May 23-25, 2006: 95-108.
[17]孙庆昭. ABAQUS混凝土塑性损伤模型概述[J].重庆建筑,2014,13(11):70-72.
[18]聂建国,王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J].工程力学,2013,30(4):59-67,82.
[19]张战廷,刘宇锋. ABAQUS中的混凝土塑性损伤模型[J].建筑结构,2011,41(增刊2):229-231.
[20]徐有邻,邵卓民,沈文都. 钢筋与混凝土的粘结锚固强度[J]. 建筑科学,1988(4): 8-14.
基金
国家自然科学基金项目(51778152);广东省省级科技计划项目(2019B020208003)