长江科学院院报 ›› 2023, Vol. 40 ›› Issue (1): 184-190.DOI: 10.11988/ckyyb.20210729

• 水利信息化 • 上一篇    

基于高光谱数据和雷达融合的滑坡信息提取

李小来1, 李海涛1, 杨世强1, 徐海章1, 王庆2   

  1. 1.国网湖北省电力有限公司 检修公司,湖北 宜昌 443300;
    2.长江大学 地球科学学院,武汉 430100
  • 收稿日期:2021-07-19 修回日期:2021-12-14 出版日期:2023-01-01 发布日期:2023-01-01
  • 作者简介:李小来(1974-),男,湖北随州人,高级工程师,主要从事超特高压输电运维检修及带电作业工作。E-mail:740780553@qq.com
  • 基金资助:
    国家电网湖北省电力有限公司科技项目(52152018002S)

Landslide Information Extraction by Fusion of Hyperspectral and Radar Data

LI Xiao-lai1, LI Hai-tao1, YANG Shi-qiang1, XU Hai-zhang1, WANG Qing2   

  1. 1. Maintenance Company of State Grid Hubei Electric Power Co., Ltd., Yichang 443300, China;
    2. School of Earth Sciences,Yangtze University, Wuhan 430100, China
  • Received:2021-07-19 Revised:2021-12-14 Published:2023-01-01 Online:2023-01-01

摘要: 为了改进微地形滑坡遥感影像分类技术,从而提高微地形滑坡遥感信息提取的精度,采用湖北宜昌部分地区的无人机航拍高光谱影像(HSI)和激光雷达(LiDAR)数据作为研究数据源,并对高光谱和LiDAR数据进行融合,最后采用结合注意力模块(CBAM)的卷积神经网络(CNN)方法,对融合后的数据进行滑坡信息提取。研究表明,利用高光谱和雷达数据的优势,可以更准确地提取滑坡信息。

关键词: 高光谱影像, 激光雷达, 数据融合, 注意力模块, 滑坡信息提取

Abstract: The aim of this research is to enhance the extraction accuracy by improving the classification of micro-terrain landslide remote sensing information. The landslide information in local areas of Yichang was extracted by using the method of Convolutional Neural Networks (CNN) combined with Convolutional Block Attention Module (CBAM) based on the fusion of Unmanned Aerial Vehicle (UAV) hyperspectral image (HSI) and Light Detection and Ranging (LiDAR) data. Results demonstrated that landslide information can be extracted with more accuracy based on the advantages of hyperspectral and radar data.

Key words: hyperspectral image, LiDAR, data fusion, CBAM, landslide information extraction

中图分类号: