长江科学院院报 ›› 2017, Vol. 34 ›› Issue (1): 12-18.DOI: 10.11988/ckyyb.20160406

• 水资源与环境 • 上一篇    下一篇

基于隐马尔可夫模型的安徽省降水特征研究

霍凤岚1, 张茜2, 阿茹娜3, 刘晓梅4, 包曙明5, 吴云飞5, 包世超5, 李树森5   

  1. 1.通辽市防汛抗旱物资供应管理站,内蒙古 通辽 028000;
    2.吉林大学 环境与资源学院, 长春 130021;
    3.内蒙古电力科学研究院,呼和浩特 010020;
    4.通辽市水利工程 建设质量与安全监督站,内蒙古 通辽 028000;
    5.通辽市水利规划设计研究院,内蒙古 通辽 028000
  • 收稿日期:2016-04-26 出版日期:2017-01-01 发布日期:2017-01-01
  • 作者简介:霍凤岚(1963-),女,内蒙古通辽人,高级工程师,主要从事水利工程建设管理,(电话)18747339991(电子信箱)tlsl401@sohu.com。
  • 基金资助:
    国家自然科学基金项目(41072171)

Research of Precipitation Characteristics in Anhui Province Using Hidden Markov Model

HUO Feng-lan1, ZHANG Qian2, A Ru-na3, LIU Xiao-mei4, BAO Shu-ming5, WU Yun-fei5, BAO Shi-chao5, LI Shu-sen5   

  1. 1.Supplies Management Station for Flood Control and Drought Relief of Tongliao City,Tongliao 028000,China;
    2.College of Environment and Resources, Jilin University, Changchun 130021, China;
    3.Inner Mongolia Electric Power Science Research Institute, Hohhot 010020, China;
    4.Quality and Safety Surveillance Station for Water Conservancy Project Construction in Tongliao City, Tongliao 028000, China;
    5.Water Conservancy Planning Design and Research Institute of Tongliao City, Tongliao 028000, China
  • Received:2016-04-26 Published:2017-01-01 Online:2017-01-01

摘要: 通过隐马尔可夫模型(Hidden Markov Model,HMM)对安徽省降水规律及特征进行分析模拟,以验证其在区域性降水方面的适用性。采用包含4个隐式状态的HMM对省内6个主要城市的多年日降水数据序列进行拟合。用贝叶斯信息准则(Bayesian Information Criterions,BIC)确定模型中隐式状态数量,用Baum-Welch算法训练得到最优模型参数,用Viterbi算法确定模型中最优状态序列。采用上述方法模拟安徽省6个城市在1960—2009年夏季共50个时段的降水情况。前40 a用于模型分析训练,后10 a用于模型验证及评价,结果表明HMM能更好地模拟降水特征,具有较高的实用性。

关键词: 隐马尔可夫模型, 隐式状态, 降水特征, 贝叶斯信息准则, Baum-Welch算法, Viterbi算法

Abstract: The laws and characteristics of precipitation in Anhui Province were analyzed and simulated using the Hidden Markov Model (HMM) to verify its applicability in regional precipitation. HMM with four implicit states was employed to fit the daily precipitation data sequence of many years in six major cities in the province. Bayesian Information Criterion was adopted to determine the implicit state quantity, the Baum-Welch algorithm to train and obtain the optimal model parameters, and the Viterbi algorithm to determine the optimal sequence of the model states. The above methods were adopted to simulate the precipitation in the summer of 1960-2009 in six cities of Anhui Province. The first 4-decade was for model training and analyzing, and the later 1 decade for model validation and evaluation. Results showed that HMM is of high practicability by better simulating rainfall characteristics.

Key words: hidden Markov model, implicit state, precipitation characteristics, Bayesian information criterion, Baum-Welch algorithm, Viterbi algorithm

中图分类号: