Rapid Monitoring of Landslide Stability Based on Multidimensional Criterion and Vector Database

DUAN Gong-hao, NIU Rui-qing, PENG Ling, LI Ya-nan

Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (2) : 143-148,154.

PDF(10747 KB)
PDF(10747 KB)
Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (2) : 143-148,154. DOI: 10.11988/ckyyb.20191416

Rapid Monitoring of Landslide Stability Based on Multidimensional Criterion and Vector Database

  • DUAN Gong-hao1, NIU Rui-qing2, PENG Ling3, LI Ya-nan1
Author information +
History +

Abstract

In an attempt to monitor the trend of landside stability rapidly and effectively, 976 landslides along the Yangtze River in the Three Gorges Reservoir Area were selected as the objects of study. Eight categories of factors which have greatest impacts on the stability of landslide were determined as basic indicators. The features of attribute data and spatial data were mined using the algorithm of association rules to build a multidimensional criterion. Furthermore, the algorithm flow was established with vector data as input stream, and the multidimensional criterion was processed by using spatial function. The stability conditions of 376 landslides were predicted using the proposed method. Results demonstrated that hazards are more likely to occur when landslides are located in soft-and-hard intercalated rock strata and [0.1, 117.90) m from rivers with a slope gradient ranging from 15° to 45°. The proposed estimation method is of good adaptability with a comprehensive precision reaching 82.45%. The method makes rapid monitoring possible by generating zoning map of landslide stability through integrating vector data input and stability evaluation.

Key words

landslide / multidimensional criterion / vector database / stability evaluation / rapid monitoring

Cite this article

Download Citations
DUAN Gong-hao, NIU Rui-qing, PENG Ling, LI Ya-nan. Rapid Monitoring of Landslide Stability Based on Multidimensional Criterion and Vector Database[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(2): 143-148,154 https://doi.org/10.11988/ckyyb.20191416

References

[1] 成永刚.近二十年来国内滑坡研究的现状及动态[J].地质灾害与环境保护,2003,14(4):1-2.
[2] 程温鸣,彭 令,牛瑞卿.基于粗糙集理论的滑坡易发性评价:以三峡库区秭归县境内为例[J].中南大学学报(自然科学版),2013,44(3): 1083-1090.
[3] GUZZETTI F, PERUCCACCI S, ROSSI M, et al. The Rainfall Intensity-Duration Control of Shallow Landslides and Debris Flows: An Update[J]. Landslides, 2008, 5(1): 3-17.
[4] 彭 令,牛瑞卿,叶润青,等.基于进化支持向量机的滑坡地下水位动态预测[J].中南大学学报(自然科学版),2012,43(12): 4788-4795.
[5] 范 千,花向红. 基于相空间重构与支持向量机预测滑坡位移的一种新方法[J].武汉大学学报(信息科学版),2009,34(2):248-251.
[6] COROMINAS J, MOYA J, LEDESMA A, et al. Prediction of Ground Displacements and Velocities from Groundwater Level Changes at the Vallcebre Landslide (Eastern Pyrenees, Spain)[J]. Landslides, 2005, 2(2): 83-96.
[7] SUN H Y, WONG L, SHANG Y Q, et al. Evaluation of Drainage Tunnel Effectiveness in Landslide Control[J]. Landslides, 2010, 7(4): 445-454.
[8] 张桂荣,殷坤龙,刘礼领,等.基于WEBGIS和实时降雨信息的区域地质灾害预警预报系统[J]. 岩土力学,2005,26(8):1312-1317.
[9] 兰恒星,周成虎,王苓涓,等,地理信息系统支持下的滑坡-水文耦合模型研究[J]. 岩石力学与工程学报,2003,22(8): 1309-1314.
[10] CARRARA A, GUZZETTI F. Use of GIS Technology in the Prediction and Monitoring of Landslide Hazard[J]. Natural Hazards, 1999, 20(2): 117-135.
[11] 陈卫兵,李端有. 基于非线性动力学的滑坡位移预测[J]. 长江科学院院报, 2006, 23(2):28-30.
[12] 段功豪, 牛瑞卿, 彭 令, 等. 诱发因素影响下的滑坡参数优化预测模型研究[J]. 武汉大学学报·信息科学版, 2017, 42(4): 531-536.
[13] 李德仁,张良培,夏桂松.遥感大数据自动分析与数据挖掘[J].测绘学报, 2014,43(12): 1211-1216.
[14] 罗国玮,张新长,齐立新,等.矢量数据变化对象的快速定位与最优组合匹配方法[J].测绘学报, 2014,1(12):1285-1292.
[15] 地质矿产部编写组. 长江三峡工程库岸稳定性研究[M]. 北京: 地质出版社,1988.
[16] 湖北省地质矿产局. 1:20万巴东幅(H~49~Ⅸ)区域地质调查报告[R].武汉:湖北省地质矿产局,1984.
[17] T/CAGHP 001—2018,地质灾害分类分级标准[S].北京:中国地质大学出版社,2018.
PDF(10747 KB)

Accesses

Citation

Detail

Sections
Recommended

/