Design Method for Gradation of Cement-stabilized Recycled Coarse Aggregate

YANG Bao-shuai, GUAN Bo-wen, SUN Zeng-zhi, XUE Cheng, DENG Chen-ji, CHEN Yu-hong

Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (2) : 131-136.

PDF(4236 KB)
PDF(4236 KB)
Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (2) : 131-136. DOI: 10.11988/ckyyb.20191386
HYDRAULIC STRUCTURE AND MATERIAL

Design Method for Gradation of Cement-stabilized Recycled Coarse Aggregate

  • YANG Bao-shuai1, GUAN Bo-wen1, SUN Zeng-zhi1, XUE Cheng1, DENG Chen-ji2, CHEN Yu-hong2
Author information +
History +

Abstract

In some local specifications in China, the gradation of cement-stabilized recycled coarse aggregate distributes in a wide range. In view of this, in the light of the particles interference theory and the maximum density curve theory, we analyze the proportion of recycled coarse aggregate and natural fine aggregate, and summarize the reasonable range of the gradation of skeleton-dense cement-stabilized recycled coarse aggregate. We also compare the compaction characteristic and compressive performance with those recommended in local specifications. Results reveal that when the content ratio of natural fine aggregate to recycled coarse aggregate is 30%-60%, a tightly packed framework structure is formed between coarse aggregates, giving rise to large internal friction angle; the natural fine aggregate and cement hydration product are fully filled, resulting in large cohesive force and skeleton-dense cement stabilized recycled coarse aggregate. The unconfined compressive strength at 7-d age is higher than 3.0 MPa. When cement dosage is 5%, the compaction characteristics and compressive performance of the design graded cement stabilized recycled coarse aggregate are better than those recommended by local specification.

Key words

recycled coarse aggregate / cement-stabilized macadam / gradation / skeleton-dense / compressive performance

Cite this article

Download Citations
YANG Bao-shuai, GUAN Bo-wen, SUN Zeng-zhi, XUE Cheng, DENG Chen-ji, CHEN Yu-hong. Design Method for Gradation of Cement-stabilized Recycled Coarse Aggregate[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(2): 131-136 https://doi.org/10.11988/ckyyb.20191386

References

[1] 何 勤, 谢 曦, 刘凤源, 等. 国内外废弃混凝土分离回收及应用技术[J]. 新型建筑材料, 2013, 40(10):38-40.
[2] 毛静民, 李色篆. PCSB固化建筑废渣的路面基层性能研究[J]. 长江科学院院报, 2012, 29(8):118-124.
[3] GHOLAMPOUR A, OZBAKKALOGLU T. Time-dependent and Long-term Mechanical Properties of Concretes Incorporating Different Grades of Coarse Recycled Concrete Aggregates[J]. Engineering Structures, 2018, 157: 224-234.
[4] AL-MUFTI R L, FRIED A N. The Early Age Non-destructive Testing of Concrete Made with Recycled Concrete Aggregate[J]. Construction & Building Materials, 2012, 37: 379-386.
[5] KAZEMIAN F, ROOHOLAMINI H, HASSANI A. Mechanical and Fracture Properties of Concrete Containing Treated and Untreated Recycled Concrete Aggregates[J]. Construction and Building Materials, 2019, 209(10):690-700.
[6] CHAN R, SANTANA M A, ODA A M, et al. Analysis of Potential Use of Fibre Reinforced Recycled Aggregate Concrete for Sustainable Pavements[J]. Journal of Cleaner Production, 2019, 218(1):183-191.
[7] 韩瑞民, 祁 峰, 张名成.建筑垃圾再生混合料配合比设计及性能试验研究[J]. 公路, 2014(3):185-188.
[8] 李晓静. 建筑垃圾作为基层材料的轻交通量公路路面结构研究[D]. 绵阳:西南科技大学, 2013.
[9] 孙家瑛, 蒋华钦, 黄 科. 再生集料特性及对水泥稳定碎石性能的影响[J]. 中外公路, 2008(2):158-161.
[10] 扈惠敏, 孙业香. 再生集料水稳碎石配合比设计与强度规律的试验研究[J]. 合肥工业大学学报(自然科学版), 2009, 32(2):238-240.
[11] 雷俊安, 郑南翔, 纪小平, 等. 级配对水泥稳定再生集料强度影响[J]. 沈阳建筑大学学报(自然科学版), 2019, 35(2):315-323.
[12] 沙爱民, 胡力群. 半刚性基层材料的结构特征[J]. 中国公路学报, 2008, 21(4):1-5.
[13] JC/T 2281—2014, 道路用建筑垃圾再生骨料无机混合料[S]. 北京: 中国建材工业出版社,2014.
[14] DB 61/T 1150—2018, 水泥稳定建筑垃圾再生集料基层施工技术规范[S].
[15] DB 22/T 5015—2019, 再生骨料道路基层工程技术标准[S].
[16] DB 11/T 999—2013, 城镇道路建筑垃圾再生路面基层施工与质量验收规范[S]. 北京: 中国建筑标准出版社,2013.
[17] LARRARD F D, SEDRAN T. Mixture-proportioning of High-performance Concrete[J]. Cement and Concrete Research, 2002, 32(11):1699-1704.
[18] 马 骉, 田尔布, 路学敏, 等. 水泥混凝土粗集料嵌锁密实结构试验分析[J]. 中外公路, 2008, 28(6):217-220.
[19] 彭 波, 李龙刚, 尹光凯, 等. 低水泥剂量稳定碎石级配组成设计与性能研究[J]. 公路, 2018, 63(5):26-33.
[20] 何建元, 杨志强, 高 谦, 等. 废石全尾砂混合骨料粒径级配分析与配比决策[J]. 矿业研究与开发, 2016, 36(11):22-27.
[21] FULLER W B, THOMPSON J E. The Laws of Proportioning Concrete[J]. Transactions of theAmerican Society of Civil Engineers, 1907, 33: 67-162.
[22] SANCHEZ-LEAL F J. Gradation Chart for Asphalt Mixes: Development[J]. Journal of Materials in Civil Engineering, 2007, 19(2):185-197.
[23] SCHLANGEN E, MIER J G M V. Simple Lattice Model for Numerical Simulation of Fracture of Concrete Materials and Structures[J]. Materials and Structures, 1992, 25(9):534-542.
[24] 张登良. 沥青路面工程手册[K]. 北京:人民交通出版社, 2003.
[25] 沈金安. 沥青及沥青混合料路用性能[M]. 北京:人民交通出版社, 2001.
[26] BROWN E R, CROSS S A. A Study of In-place Rutting of Asphalt Pavements[R]. Auburn, AL: National Center for Asphalt Technology, Auburn University, 1989.
[27] NEWELL T A,ERWIN R F. The Strength of Concrete and Its Relation to the Cement Aggregates and Water[R]. Illinois:University of Illinois, 1923.
[28] 刘金杰. 骨架密实型水泥碎石基层研究[D]. 河北工业大学, 2007.
[29] 林绣贤. 柔性路面设计[M]. 北京:人民交通出版社, 1988.
[30] 彭 波, 尹光凯, 李海宁, 等. 骨架密实型水泥稳定碎石级配设计与分形评价[J]. 中外公路,2016, 36(3):284-288.
[31] 王 峰, 侯恩创, 刘海龙. 骨架密实型水泥稳定碎石集料级配设计方法的研究[J]. 公路, 2013, 58(12):184-187.
[32] 严家伋. 道路建筑材料[M]. 北京:人民交通出版社, 2006.
[33] 陈忠达, 袁万杰, 郑东启. 级配理论应用研究[J]. 重庆交通学院学报, 2005,24(4):44-48.
[34] JTG E30—2005, 公路工程水泥及水泥混凝土试验规程[S]. 北京:人民交通出版社,2005.
[35] JTG E42—2005, 公路工程集料试验规程[S]. 北京:人民交通出版社,2005.
[36] 唐永光. 摩擦角与自锁[J]. 力学与实践,2010,32(6):121-123.
[37] 胡力群, 沙爱民. 骨架密实结构水泥粉煤灰稳定集料组成设计方法研究[J]. 公路交通科技, 2010, 27(9):18-22.
[38] JTG/T F20—2015, 公路路面基层施工技术细则[S]. 北京:人民交通出版社, 2015.
[39] JTG E51—2009, 公路工程无机结合料稳定材料试验规程[S]. 北京:人民交通出版社, 2009.
PDF(4236 KB)

Accesses

Citation

Detail

Sections
Recommended

/