Energy Mechanism of Displacement's Abrupt Change Caused by Blasting Load in Jointed Rock Mass Slopes

DAI Jin-hao, YANG Jian-hua, HU Ying-guo, YAO Chi

Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (2) : 100-106.

PDF(4874 KB)
PDF(4874 KB)
Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (2) : 100-106. DOI: 10.11988/ckyyb.20191239
ROCK-SOIL ENGINEERING

Energy Mechanism of Displacement's Abrupt Change Caused by Blasting Load in Jointed Rock Mass Slopes

  • DAI Jin-hao1,2, YANG Jian-hua1,2, HU Ying-guo3, YAO Chi1,2
Author information +
History +

Abstract

Blasting load is a major dynamic disturbance factor of rock slope excavation in water conservancy and hydropower projects. Displacement often changes abruptly in the process of blasting excavation. In association with measured displacement data of a jointed rock slope, we investigated into the mechanism and variation of the abrupt change of displacement of the jointed rock mass slope induced by blasting load via numerical simulation. We also probed into the influence of blasting parameters on the abrupt changes of displacement. Results indicate that the abrupt change of displacement of the jointed rock mass is caused by the sudden release of strain energy accumulated in the rock mass during the boosting load. The amount of displacement's abrupt change is determined by both the peak of accumulated strain energy and the release rate of strain energy. The larger the peak value of blasting load and the longer the boosting time, the more strain energy is accumulated. The shorter the depressurization time, the faster the strain energy release rate would be, resulting in a larger abrupt change of displacement.

Key words

jointed rock mass / slope / blasting load / displacement / strain energy

Cite this article

Download Citations
DAI Jin-hao, YANG Jian-hua, HU Ying-guo, YAO Chi. Energy Mechanism of Displacement's Abrupt Change Caused by Blasting Load in Jointed Rock Mass Slopes[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(2): 100-106 https://doi.org/10.11988/ckyyb.20191239

References

[1] 宋胜武, 向柏宇, 杨静熙, 等. 锦屏一级水电站复杂地质条件下坝肩高陡边坡稳定性分析及其加固设计[J]. 岩石力学与工程学报, 2010, 29(3): 442-458.
[2] 王吉亮, 杨 静, 郝文忠, 等. 乌东德水电站左岸尾水出口陡倾顺向坡变形影响因素分析[J]. 岩石力学与工程学报, 2017, 36(9): 2194-2204.
[3] 黎满林, 卫 蔚, 张荣贵. 大岗山右岸边坡卸荷裂隙密集带加固及稳定性评价研究[J]. 岩石力学与工程学报, 2014, 33(11): 2276-2282.
[4] 邬爱清. 基于关键块体理论的岩体稳定性分析方法及其在三峡工程中的应用[J]. 长江科学院院报, 2019, 36(2): 1-7.
[5] 夏熙伦,周火明,盛 谦,等. 三峡工程船闸高边坡岩体松动区及其性状[J]. 长江科学院院报, 1999, 16(4): 1-5.
[6] 盛 谦,丁秀丽,冯夏庭,等. 三峡船闸高边坡考虑开挖卸载效应的位移反分析[J]. 岩石力学与工程学报, 2000, 19(增刊1): 987-993.
[7] 石安池,赵明华,薛果夫. 三峡工程永久船闸高边坡岩体变形特征与机理分析[J]. 岩石力学与工程学报, 2001, 20(5): 638-642.
[8] 卢文波, 金 李, 陈 明, 等. 节理岩体爆破开挖过程的动态卸载松动机理研究[J]. 岩石力学与工程学报, 2005, 24(增刊1): 4653-4657.
[9] HIBINO S, MOTOJIMA M. Characteristic Behavior of Rock Mass During Excavation of Large scale Caverns[C]//Proceedings of the 8th International Conference of ISRM. Tokyo, Japan. September 25-29, 1995: 583-586.
[10] COOK N G W. Seismicity Associated with Mining[J]. Engineering Geology, 1976, 10(2/3/4): 99-122.
[11] 罗 忆, 卢文波, 陈 明, 等. 开挖瞬态卸荷引起的节理岩体松动模拟试验[J]. 岩石力学与工程学报, 2015, 34(增刊1): 2941-2947.
[12] TAO M, LI X B, WU C Q. Characteristics of the Unloading Process of Rocks under High Initial Stress[J]. Computers and Geotechnics, 2012, 45: 83-92.
[13] 杨风威, 李海波, 刘亚群, 等. 台山核电站边坡爆破振动监测及数值模拟研究[J]. 岩土力学, 2011, 32(增刊2): 628-633.
[14] 王 晗, 陈 明, 卢文波, 等. 柱状节理岩体爆破开挖松动的数值模拟[J].爆破, 2016, 33(1): 34-39.
[15] 刘永茜, 杨 军, 余德运. 爆破冲击边坡稳定性非连续变形分析模拟研究[J]. 兵工学报, 2010, 31(增刊1): 74-78.
[16] 张凤鹏, 彭建宇, 范光华, 等. 不同静应力和节理条件下岩体爆破破岩机制研究[J]. 岩土力学, 2016, 37(7): 1840-1846.
[17] KYHLEMEYER R L, LYSMER J. Finite Element Method Accuracy for Wave Propagation Problems[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1973, 99(5): 417-421.
[18] 陈育民,徐鼎平. FLAC/FLAC3D基础工程实例[M]. 2版.北京:中国水利水电出版社, 2013.
[19] 唐 旭, 方正锋, 邹 飞, 等. 基于FLAC3D的岩质边坡爆破动力响应规律研究[J]. 人民长江, 2019, 50(3): 198-204.
PDF(4874 KB)

Accesses

Citation

Detail

Sections
Recommended

/