Spatial and Temporal Clustering Model of Concrete Arch Dam Deformation Data Based on Panel Data Analysis Method

HU Tian-yi

Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (2) : 39-45.

PDF(4599 KB)
PDF(4599 KB)
Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (2) : 39-45. DOI: 10.11988/ckyyb.20191217
ENGINEERING SAFETY AND DISASTER PREVENTION

Spatial and Temporal Clustering Model of Concrete Arch Dam Deformation Data Based on Panel Data Analysis Method

  • HU Tian-yi
Author information +
History +

Abstract

Deformation data directly characterizes the safety condition of concrete arch dam. However, traditional deformation analysis targets only a single monitoring point. The similarity and association of deformation between different monitoring points still need to be excavated. In this research, a clustering analysis model for the deformation of high concrete arch dam is established based on panel data analysis method. The deformation sequences of concrete arch dam are analyzed at first, and the similarities of temporal and spatial deformation sequences are extracted based on the clustering method in space-time data mining. Three similarity indicators, namely, absolute distance, incremental distance, and growth distance of the deformation sequences at different time sections and different positions as well as their corresponding comprehensive distance indicators are proposed to quantify the similarity between temporal and spatial sequences. Moreover, Ward's junction clustering method is adopted to divide the time periods and the corresponding deformation areas. Practical engineering case study verifies the rationality of the selected similarity indicators and the effectiveness of the model.

Key words

concrete arch dam / deformation / panel data / spatial and temporal clustering analysis / indicators of similarity

Cite this article

Download Citations
HU Tian-yi. Spatial and Temporal Clustering Model of Concrete Arch Dam Deformation Data Based on Panel Data Analysis Method[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(2): 39-45 https://doi.org/10.11988/ckyyb.20191217

References

[1] 秦 栋. 特高拱坝变形性态时空分析模型研究[D]. 南京:河海大学, 2015.
[2] 吴中如, 沈长松, 阮焕祥. 水工建筑物安全监控理论及其应用[M]. 南京: 河海大学出版社, 1990.
[3] 顾冲时, 吴中如. 拱坝动态空间变形场的混合模型研究[J]. 工程力学, 1996(增刊): 376-380.
[4] 殷详详, 包腾飞, 李月娇, 等. HDNN-MC模型在特高拱坝变形预测中的应用[J]. 中国科技论文, 2014, 9(11): 1258-1261.
[5] 谢国权, 戚 蓝, 曾新华. 基于小波和神经网络拱坝变形预测的组合模型研究[J]. 武汉大学学报(工学版), 2006, 39(2): 16-19.
[6] 马洪琪. 我国坝工技术的发展与创新[J]. 水力发电学报, 2014, 33(6): 1-10.
[7] 李因果, 何晓群. 面板数据聚类方法及应用[J]. 统计研究, 2010, 27(9): 73-79.
[8] 郑兵云. 多指标面板数据的聚类分析及其应用[J]. 数理统计与管理, 2008, 27(2): 265-270.
[9] 刘翠霞,史代敏.基于关系聚类的动态面板数据模型及其应用研究[J].统计与信息论坛,2015,30(3):10-16.
[10] 施玉群,何金平.基于信息熵的大坝多效应量聚类融合诊断模型[J].水力发电学报,2013,32(5):239-243.
[11] 陈继光. 大坝变形观测数据的动态聚类分析[J]. 水电能源科学, 2000, 18(4): 22-24.
[12] 陈 毅. 基于基因表达式编程的大坝位移强度聚类分析模型研究[D]. 赣州:江西理工大学, 2014.
[13] 欧阳森, 石怡理. 改进熵权法及其在电能质量评估中的应用[J]. 电力系统自动化, 2013, 37(21): 156-159,164.
[14] 王永兴, 景维民. 中国地下经济的区域发展分化:基于多指标面板数据的聚类分析检验[J]. 南开经济研究, 2014(6): 44-57.
[15] 李因果, 戴 翼, 何晓群. 基于自适应权重的面板数据聚类方法[J]. 系统工程理论与实践, 2013, 33(2): 388-395.
[16] 胡 波, 刘观标, 吴中如. 小湾特高拱坝首蓄期坝体变形特性分析及评价[J]. 水利水电科技进展, 2015, 35(6):68-72,118.
PDF(4599 KB)

Accesses

Citation

Detail

Sections
Recommended

/