Mechanical Properties and Micro-properties of Plant Fiber Shotcrete

JIANG Ping-wei, FANG Jiang-hua, PANG Jian-yong, HUANG Jin-kun

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (8) : 137-141.

PDF(4677 KB)
PDF(4677 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (8) : 137-141. DOI: 10.11988/ckyyb.20190646
HYDRAULIC STRUCTURE AND MATERIAL

Mechanical Properties and Micro-properties of Plant Fiber Shotcrete

  • JIANG Ping-wei1, FANG Jiang-hua1,2, PANG Jian-yong1,3, HUANG Jin-kun1,3
Author information +
History +

Abstract

The microstructure of plant fiber shotcrete (PFSC) is analyzed by means of scanning electron microscopy (SEM) in a purpose of investigating the influence of plant fiber dosage on the mechanical properties and thermal conductivity of PFSC. Compared with those of plain shotcrete, the compressive strength and splitting tensile strength of PFSC dosed with 2.0 kg/m3 plant fiber increase by 17.35% and 20.26%, respectively, while the thermal conductivity reduces by 20.61%. SEM analysis shows that plant fiber in low-volume well disperses in the interior of the shotcrete and adheres to the concrete matrix. However, large content of plant fiber agglomerates in the shotcrete, leading to more internal defects of PFSC. According to the comprehensive mechanical properties test results, we recommend that the plant fiber content should not exceed 2.0 kg/m3.

Key words

shotcrete / plant fiber / mechanical properties / thermal conductivity / microscopic performance

Cite this article

Download Citations
JIANG Ping-wei, FANG Jiang-hua, PANG Jian-yong, HUANG Jin-kun. Mechanical Properties and Micro-properties of Plant Fiber Shotcrete[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(8): 137-141 https://doi.org/10.11988/ckyyb.20190646

References

[1] 王家滨,牛荻涛. 喷射混凝土力学性能试验研究及预测模型建立[J]. 硅酸盐通报,2019,38(1):125-131.
[2] HOOSHECHIN M, TANZADE J. Experimental and Mechanical Performance of Shotcrete Made with Nanomaterials and Fiber Reinforcement[J]. Construction and Building Materials, 2018, 165: 199-205.
[3] BERNARD E S. Age-dependent Changes in Post-crack Performance of Fibre Reinforced Shotcrete Linings[J]. Tunnelling and Underground Space Technology, 2015, 49: 241-248.
[4] 宋梓宁,周林聪. 秸秆混凝土的导热系数及抗压承载力的试验研究[J]. 水利与建筑工程学报,2015,13(1):148-150,166.
[5] 张 强,李耀庄,刘保华. 秸秆资源在混凝土中应用的研究进展[J]. 硅酸盐通报,2015,34(4):1000-1003.
[6] 李超飞,苏有文,陈国平. 植物纤维混凝土的研究现状[J]. 混凝土,2013(5):55-56,61.
[7] 胡玉龙,陈国新,陈亮亮. 植物纤维增强型玻化微珠陶粒混凝土配合比设计[J]. 混凝土与水泥制品,2015(1):65-68.
[8] IZQUIERDO I S, RAMALHO M, IZQUIERDO O S. Post-cracking Behavior of Blocks, Prisms, and Small Concrete Walls Reinforced with Plant Fiber[J]. Revista IBRACON de Estruturas et Materiais, doi: 10.1590/S1983-41952013000400006.
[9] FERREIRA C R, TAVARES S, FERREIRA B H M, et al. Comparative Study about Mechanical Properties of Structural Standard Concrete and Concrete with Addition of Vegetable Fibers[J]. Materials Research,2017,20(2):102-107.
[10]ABBAS N, KHALID H R, BAN G, et al. Silica Aerogel Derived from Rice Husk: An Aggregate Replacer for Lightweight and Thermally Insulating Cement-based Composites[J]. Construction and Building Materials, 2018,195:312-322.
[11]赵树琪,李 蔚,戴宝生,等.棉花秸秆综合利用现状分析[J].湖北农业科学,2017,56(12):2201-2203.
[12]LIU Chao, XU Gui-zhong, XU Bing. Field Study on the Vacuum Preloading of Dredged Slurry with Wheat Straw Drainage[J]. KSCE Journal of Civil Engineering, 2018,22(11): 4327-4333.
[13]JGJ/T 372—2016,喷射混凝土应用技术规程[S].北京:中国建筑工业出版社,2016.
[14]GB/T 50081—2002,普通混凝土力学性能试验方法标准[S]. 北京:中国建筑工业出版社,2002.
[15]GB/T 10294—2008,绝热材料稳态热阻及有关特性的测定防护热板法[S]. 北京:中国标准出版社,2008.
[16]焦华喆,韩振宇,陈新明,等. 玄武岩纤维对喷射混凝土力学性能及微观结构影响机制[J]. 复合材料学报2019,36(8):1-9.
[17]郭平业,秦 飞. 张双楼煤矿深井热害控制及其资源化利用技术应用[J]. 煤炭学报,2013,38(增刊2):393-398.
[18]何满潮,郭平业,陈学谦,等. 三河尖矿深井高温体特征及其热害控制方法[J]. 岩石力学与工程学报,2010,29(增刊1):2593-2597.
[19]庞建勇,黄金坤,姚文杰,等.巷道隔热喷射混凝土强度及导热性能试验研究[J].长江科学院院报,2018,35(2):119-124.
PDF(4677 KB)

Accesses

Citation

Detail

Sections
Recommended

/