Stability Analysis of High Bedding Slope with Multiple Free Faces and Faults

XIAO Kai-qian,WANG Shuai, ZHANG Ming, ZHENG Hong-wei, LIANG Guan-ting

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (12) : 119-125.

PDF(5146 KB)
PDF(5146 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (12) : 119-125. DOI: 10.11988/ckyyb.20191068
ROCKSOIL ENGINEERING

Stability Analysis of High Bedding Slope with Multiple Free Faces and Faults

  • XIAO Kai-qian1,WANG Shuai2, ZHANG Ming3, ZHENG Hong-wei1, LIANG Guan-ting1
Author information +
History +

Abstract

The Xiangxi Highway Bridge in the Three Gorges Reservoir Area is faced with prominent engineering geological problems as f1 and f2 faults and multiple free faces developed in the high bedding slope. On the basis of survey data and field investigation, we analyzed the geological background, and finely evaluated the parameters of dominant structural planes of the slope via site mechanical test. Moreover, we calculated the safety factor of the slope in different structural planes in different layers and slip surfaces with different lengths via the Sarma method. We further established the relations of support force and average thickness of sliding body against safety factor. Results demonstrated that for bedding slope with structural plane penetrating through to ground surface, the safety factor of sliding body on the structural plane is in a negative correlation with the average thickness of the sliding body, and in a weak correlation with the length of the sliding surface. The slope body can be divided into three sections according to the terrain: the locking section at slope foot, the main sliding section, and the pulling section at slope top. The sliding body on the f1 fault has insufficient safety reserve because of large thickness of rock layer and low strength of the sliding surface: the shear-off peak friction angle is 27.0°, the cohesive force is 0.07 MPa, the residual friction angle is 25.2°, and the residual cohesion is 0.05 MPa. An additional support force of 4 283 kN/m or unloading 32.6% of the slope volume is needed to meet the lower limit of stability standard. Due to huge work quantity, we recommend anti-slide pile design in combination with engineering excavation.

Key words

high bedding slope / fault / structural plane / direct shear test / stability evaluation / safety factor

Cite this article

Download Citations
XIAO Kai-qian,WANG Shuai, ZHANG Ming, ZHENG Hong-wei, LIANG Guan-ting. Stability Analysis of High Bedding Slope with Multiple Free Faces and Faults[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(12): 119-125 https://doi.org/10.11988/ckyyb.20191068

References

[1] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007,26(3):433-454.
[2] 王智德, 夏元友, 夏国邦, 等. 顺层岩质边坡结构面抗剪强度特性试验研究[J]. 岩土力学, 2015,36(增刊2):193-200.
[3] 梁德明, 李长冬, 雍 睿, 等. 基于参数劣化的软硬相间顺层边坡稳定性研究[J]. 岩土力学, 2014,35(增刊1):195-202.
[4] 曾 胜, 李振存, 韦 慧, 等. 降雨渗流及干湿循环作用下红砂岩顺层边坡稳定性分析[J]. 岩土力学, 2013,34(6):1536-1540.
[5] 邹宗兴, 唐辉明, 熊承仁, 等. 大型顺层岩质滑坡渐进破坏地质力学模型与稳定性分析[J]. 岩石力学与工程学报, 2012,31(11):2222-2231.
[6] 龙建辉, 赵邦强, 李 坤. 顺层岩质边坡多级滑动模式及成因机理分析[J]. 中国矿业大学学报, 2016,45(6):1156-1163.
[7] 夏开宗, 陈从新, 鲁祖德, 等. 考虑水力作用的顺层岩质边坡稳定性图解分析[J]. 岩土力学, 2014,35(10):2985-2993
[8] 孙 强,朱术云,薛 雷,等.力矩效应对顺层岩质边坡稳定性的影响[J].煤炭学报,2011,36(5):762-765.
[9] 董 捷, 宋绪国, 许再良. 铁路顺层路堑边坡稳定性分析方法研究[J]. 铁道工程学报, 2013,30(3):19-23.
[10]段永伟, 胡修文, 吁 燃, 等. 顺层岩质边坡稳定性极限平衡分析方法比较研究[J]. 长江科学院院报, 2013,30(12):65-68.
[11]姚 环, 郑 振, 简文彬, 等. 公路岩质高边坡稳定性的综合评价研究[J]. 岩土工程学报, 2006,28(5):558-563.
[12]GB/T 50218—2014,工程岩体分级标准[S]. 北京: 中国计划出版社, 2014.
[13]JTG D30—2004,公路路基设计规范[S]. 北京: 人民交通出版社, 2000.
[14]申志金, 彭少文, 柳晓春.宜昌香溪长江公路大桥工程长江大桥工程地质勘察说明书(详勘阶段)[R].武汉:武汉长江三峡勘测研究院有限公司, 2015.
PDF(5146 KB)

Accesses

Citation

Detail

Sections
Recommended

/