Dynamic Modulus and Damping Ratio of Sandy Gravel Material Based on Large-scale Dynamic Triaxial Test

TAN Fan, ZHANG Ting, XU Han

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (7) : 130-134.

PDF(3231 KB)
PDF(3231 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (7) : 130-134. DOI: 10.11988/ckyyb.20190439
ROCKSOIL ENGINEERING

Dynamic Modulus and Damping Ratio of Sandy Gravel Material Based on Large-scale Dynamic Triaxial Test

  • TAN Fan, ZHANG Ting, XU Han
Author information +
History +

Abstract

The dynamic modulus and damping ratio of sandy gravel material of a sandy gravel dam with asphalt concrete core wall are tested by large dynamic triaxial tester. The dynamic stress-strain characteristics of sandy gravel dam material are studied. The influence of confining pressure on the maximum dynamic modulus, dynamic shear modulus ratio and damping ratio is analyzed. The characteristic parameters such as the dynamic modulus and damping ratio of the dam shell material and transition material are determined using the modified equivalent linear viscoelastic model. Test results show that with the climbing of confining pressure, the dynamic shear modulus of sandy gravel dam material increases while damping ratio decreases. With the growth of dynamic strain, the dynamic shear modulus declines while damping ratio increases. By incorporating normalized dynamic strain into the modified equivalent linear model, the influence of confining pressure on dynamic modulus attenuation and damping ratio are better eliminated, and moreover the dynamic deformation characteristics of sandy gravel dam material are more accurately reflected.

Key words

sandy gravel material / dynamic modulus / damping ratio / dynamic shear modulus ratio / modified equivalent linear model / large-scale dynamic triaxial test

Cite this article

Download Citations
TAN Fan, ZHANG Ting, XU Han. Dynamic Modulus and Damping Ratio of Sandy Gravel Material Based on Large-scale Dynamic Triaxial Test[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(7): 130-134 https://doi.org/10.11988/ckyyb.20190439

References

[1] 关志诚.水工设计手册(第六卷:土石坝)[M].北京:中国水利水电出版社,2014.
[2] 沈珠江,徐 刚.堆石料的动力变形特性[J].水利水运科学研究, 1996,6(2):143-150.
[3] 董威信,孙书伟,于玉贞,等. 堆石料动力特性大型三轴试验研究[J]. 岩土力学,2011,32(增刊2):296-301.
[4] 房恩泽. 堆石料的模量阻尼试验研究[J]. 水利与建筑工程学报, 2015, 13(2): 173-176.
[5] 吕小龙,迟世春,贾玉峰.堆石料动力变形特性试验研究[J]. 岩土工程学报,2018,40(9):1729-1735.
[6] 杜长劼,谢红强,肖明砾,等.强震区土石坝筑坝材料动力特性试验研究[J].四川大学学报(工程科学版),2016,48(增刊2): 39-44.
[7] 凌 华,傅 华,蔡正银,等.坝料动力变形特性试验研究[J].岩土工程学报,2009,31(12):1920-1924.
[8] 于玉贞,刘治龙,孙 逊.面板堆石坝筑坝材料动力特性试验研究[J].岩土力学,2009,30(4):909-914.
[9] 傅 华,赵大海,韩华强,等. 不同级配粗颗粒材料动力特性试验研究[J].岩土力学,2016,37(8):2279-2284.
[10]傅 华,韩华强,凌 华. 密度对粗颗粒材料动力特性影响试验研究[J].中国水利水电科学研究院学报,2014,40(9):437-441.
[11]朱 晟,周建波. 粗粒筑坝材料的动力变形特性[J].岩土力学,2010,31(5):1375-1380.
[12]SL 237—1999,土工试验规程[S].北京:中国水利水电出版社,1999.
PDF(3231 KB)

Accesses

Citation

Detail

Sections
Recommended

/