Combinatorial Method of Deformation Prediction Based on Multipoint Monitoring for Large Slope and Its Engineering Application

TAN Xiao-long

Journal of Changjiang River Scientific Research Institute ›› 2014, Vol. 31 ›› Issue (11) : 143-148.

PDF(1203 KB)
PDF(1203 KB)
Journal of Changjiang River Scientific Research Institute ›› 2014, Vol. 31 ›› Issue (11) : 143-148. DOI: 10.3969/j.issn.1001-5485.2014.11.0282014,31(11):143-148
ENGINEERNG DESIGN AND CONSTRUCTION MONITORING

Combinatorial Method of Deformation Prediction Based on Multipoint Monitoring for Large Slope and Its Engineering Application

  • TAN Xiao-long1,2
Author information +
History +

Abstract

Time series analysis model based on single monitoring point is independent which doesn’t fully consider the space correlation of similar monitoring points, and couldn’t reflect the overall trend and pattern of slope deformation. On the basis of single point grey forecasting model, we applied fuzzy clustering method to the time series relationship analysis of slope monitoring points and established a deformation prediction model in consideration of multipoint space relevance. The model is applied to slope engineering of Jinping hydropower station and the results show that the reliability and accuracy of this method are obviously higher than those of single point prediction model.

Key words

slope / time series / fuzzy clustering / multipoint monitoring / combinatorial prediction model

Cite this article

Download Citations
TAN Xiao-long. Combinatorial Method of Deformation Prediction Based on Multipoint Monitoring for Large Slope and Its Engineering Application[J]. Journal of Changjiang River Scientific Research Institute. 2014, 31(11): 143-148 https://doi.org/10.3969/j.issn.1001-5485.2014.11.0282014,31(11):143-148

References

[1] 张玉祥. 岩土工程时间序列预报问题初探. 岩石力学与工程学报, 1998, 17(5): 552-558. (ZHANG Yu-xiang. Primary Research on Forecasting Problem of Time Sequence in Geotechnical Engineering. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(5): 552-558. (in Chinese))
[2] 周 宁, 傅鹤林, 郭建峰, 等. 引入修正因子的非等时距时变参数灰色预测模型及应用. 岩土工程学报, 2006, 28(6): 756-760. (ZHOU Ning, FU He-lin, GUO Jian-feng, et al. Correcting Factor of Gray with Prediction Model Unequal Interval Time-varying Parameters. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 756-760. (in Chinese))
[3] FENG Xia-ting, ZHAO Hong-bo, LI Shao-jun. Modeling Non-linear Displacement Time Series of Geo-materials Using Evolutionary Support Vector Machines. International Journal of Rock Mechanics & Mining Sciences, 2004, (41): 1087-1107.
[4] 巫德斌,徐卫亚. 基于GM (1, 1)优化模型的岩石边坡变形预测. 中国地质灾害与防治学报, 2003, 14(1): 85-89. (WU De-bin, XU Wei-ya. Forecasting of Rock Slope Displacement Based on GM (1, 1) Optimized Model. Chinese Journal of Geological Hazard and Control, 2003,14(1): 85-89. (in Chinese))
[5] 唐天国,万 星,刘浩吾. 高边坡安全监测的改进GM模型预测研究. 岩石力学与工程学报,2005,24(2): 307-312. (TANG Tian-guo, WAN Xing, LIU Hao-wu. Improved GM Model for Safety Monitoring of High Rock Slopes. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(2): 307-312. (in Chinese))
[6] 刘明贵, 杨永波. 边坡位移预测组合灰色神经网络方法.中国地质灾害与防治学报, 2006, 17(2): 74-77. (LIU Ming-gui, YANG Yong-bo. Application of Composite Gray Neural Network Method for Prediction of Slope Displacement. Chinese Journal of Geological Hazard and Control, 2006, 17(2): 74-77. (in Chinese))
[7] 刘 晓, 曾祥虎, 刘春宇. 边坡非线性位移的神经网络─时间序列分析. 岩石力学与工程学报, 2005, 24(19): 3499-3504. (LIU Xiao, ZENG Xiang-hu, LIU Chun-yu. Research on Artificial Neural Network-Time Series Analysis of Slope Nonlinear Displacement. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(19): 3499-3504. (in Chinese))
[8] 董 辉, 傅鹤林, 冷伍明. 滑坡位移时序预测的核函数构造. 岩土力学, 2008, 29(4): 1087-1092. (DONG Hui, FU He-lin, LENG Wu-ming. Kernel Design for Displacement Time Series of Landslide. Rock and Soil Mechanics, 2008, 29(4): 1087-1092. (in Chinese))
[9] 赵静波,李 莉,高 谦. 边坡变形预测的灰色理论研究与应用. 岩石力学与工程学报,2005,24(增2):5799-5802.(ZHAO Jing-bo,LI Li,GAO Qian. Research and Application of Grey Theory to Slope Deformation Prediction . Chinese Journal of Rock Mechanics And Engineering,2005,24(Sup.2):5799-5802.(in Chinese))
[10]赵洪波. 边坡变形预测的群体智能模型 . 岩石力学与工程学报,2006,25(8):1664-1669.(ZHAO Hong-bo. Swarm Intelligent Model for Deformation Prediction of Slope. Chinese Journal of Rock Mechanics and Engineering,2006,25(8):1664-1669.(in Chinese))
[11]吴益平, 藤伟福, 李亚伟. 灰色-神经网络模型在滑坡变形预测中的应用. 岩石力学与工程学报, 2007, 26(3): 632-636. (WU Yi-ping, TENG Wei-fu, LI Ya-wei. Application of Gray-neural Network Model to Landslide Deformation Prediction. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 632-636. (in Chinese))
[12]董 辉,陈家博,杨果岳,等. 工程先验知识辨识下的滑坡非平稳变形支持向量机预测. 岩土力学, 2012, 30(8): 2366-2373.(DONG Hui,CHEN Jia-bo,YANG Guo-yue,et al. SVM Prediction of Non-stationary Deformation of Landslide Based on Identification with Prior Knowledge. Rock and Soil Mechanics, 2013, 30(8): 2366-2373. (in Chinese))
[13]刘湘平,谢学斌,罗一忠. 边坡非线性位移预测的动力系统自记忆模型. 岩土工程学报, 2010, 32(10): 1535-1542. (LIU Xiang-ping, XIE Xue-bin, LUO Yi-zhong. Self-memorization Model of Dynamic System for Predicting Nonlinear Displacement of Slopes. Chinese Journal of Geotechnical Engineering, 2010, 32(10): 1535-1542. (in Chinese))
[14]李恒凯,刘传立. 基于灰色理论的变形智能预测模型库研究. 岩土力学, 2011, 32(10): 3199-3204. ( LI Heng-kai, LIU Chuang-li . Study of Deformation Intelligent Prediction Model Based on Gray Theory. Rock and Soil Mechanics, 2011, 32(10): 3199-3204. (in Chinese))
[15]曹洋兵,晏鄂川,谢良甫. 考虑环境变量作用的滑坡变形动态灰色-进化神经网络预测研究. 岩土力学, 2012, 33(3): 848-852. (CAO Yang-bing, YAN E-chuan, XIE Liang-fu. Study of Landslide Deformation Prediction Based on Gray Model-evolutionary Neural Network Model Considering Function of Environmental Variables. Rock and Soil Mechanics, 2012, 33(3): 848-852. (in Chinese))
PDF(1203 KB)

Accesses

Citation

Detail

Sections
Recommended

/