Pore Characteristics of Reticulated Red Clay

ZHUO Li-chun, LI Jian-zhong, HUANG Fei

Journal of Changjiang River Scientific Research Institute ›› 2014, Vol. 31 ›› Issue (8) : 55-59.

PDF(1217 KB)
PDF(1217 KB)
Journal of Changjiang River Scientific Research Institute ›› 2014, Vol. 31 ›› Issue (8) : 55-59. DOI: 10.3969/j.issn.1001-5485.2014.08.0112014,31(08):55-59
HYDRAULICS

Pore Characteristics of Reticulated Red Clay

  • ZHUO Li-chun, LI Jian-zhong, HUANG Fei
Author information +
History +

Abstract

The shape, size, and distribution of the pore spaces in soil are critical elements of soil’s structural composition, and they play principal roles in governing the overall engineering behavior of the bulk soil mass. The pore characteristics of reticulated red clay including the shape of the pore, specific surface area, pore volume, distribution of pore diameter, and fractal characteristic was analyzed by automatic specific surface area analyzer based on gas absorption method in this paper. The results reveal that reticulated red clay is consisted of plate-shaped minerals, and the pore is slit-shaped; the specific surface area of reticulated red clay is 20.9 m2/g, which indicate that the clay minerals it contained was mainly kaolin; the total pore volume with pore diameter less than 3 150  is largely composed of mesopore and megalopore with diameter ranging from 27  to 1 958 . The distribution curve of pore diameter demonstrated that the optimal size of pore diameter are 41,130,180, 350 ,and the average pore diameter is 1 414 .The pore distribution of reticulated red clay has fractal characteristic, and the fractional dimension is 2.7 and 2.8.

Key words

reticulated red clay / specific surface area / pore / fractal

Cite this article

Download Citations
ZHUO Li-chun, LI Jian-zhong, HUANG Fei. Pore Characteristics of Reticulated Red Clay[J]. Journal of Changjiang River Scientific Research Institute. 2014, 31(8): 55-59 https://doi.org/10.3969/j.issn.1001-5485.2014.08.0112014,31(08):55-59

References

[1] 朱春润,索科洛夫B. H. .成都粘土孔隙性的微观研究[J]. 地质灾害与环境保护,1994,5(3):37-47. (ZHU Chun-run, SOKOLOV B H. Microscopical Study of Porosity of Chengdu Clay[J]. Journal of Geological Hazards and Environment Preservation, 1994, 5(3):37-47. (in Chinese))
[2] 王 清,王剑平. 土孔隙的分形几何研究[J].岩土工程学报,2000,22(4):496-498. (WANG Qing, WANG Jian-ping. A Study of Fractal of Porosity in the Soils[J]. Journal of Geotechnical Engineering, 2000, 22(4): 496-498. (in Chinese))
[3] 刘龙波, 王旭辉. 由吸附等温线分析膨润土的分形孔隙[J].高校化学工程学报,2003, 17(5):591-595. (LIU Long-bo, WANG Xu-hui. Fractal Analysis of Bentonite Porosity by Using Nitrogen Adsorption Isotherms[J]. Journal of Chemical Engineering of Chinese Universities, 2003, 17(5): 591-595. (in Chinese))
[4] 齐吉琳, 谢定义. 孔隙分布曲线及其在土的结构性分析中的应用[J]. 西安公路交通大学学报,2000,20 (2): 6-8. (QI Ji-lin, XIE Ding-yi. The Pore Size Distribution Curve and Its Application in Soil Structure Analysis [J]. Journal of Xi’an Highway University, 2000, 20(2): 6-8. (in Chinese))
[5] 熊承仁,唐辉明,刘宝琛,等. 利用SEM照片获取土的孔隙结构参数[J]. 地球科学—中国地质大学学报,2007,32(3):415-419. (XIONG Cheng-ren, TANG Hui-ming, LIU Bao-chen, et al. Using SEM Photos to Gain the Pore Structural Parameters of Soil Samples[J]. Earth Science: Journal of China University of Geosciences, 2007, 32(3):415-419.(in Chinese))
[6] 柳艳华,张 宏,杜东菊,等. 多重分形在海积软土微观结构研究中的应用[J].水文地质工程地质,2006,33 (3):83-87. (LIU Yan-hua, ZHANG Hong, DU Dong-ju, et al. The Applications of Multi-fractal in Soil Microstructure [J]. Hydrogeology & Engineering Geology, 2006, 33(3):83-87.(in Chinese))
[7] 毛灵涛,薛 茹,安里千,等. 软土孔隙微观结构的分形研究[J].中国矿业大学学报,2005,34(5):6-10. (MAO Ling-tao, XUE Ru, AN Li-qian, et al. Fractal Approach on Soft Soil Porosity Microstructure [J]. China University of Mining & Technology, 2005, 34(5): 6-10.(in Chinese))
[8] 张季如,祝 杰,黄 丽,等. 固结条件下软黏土微观孔隙结构的演化及其分形描述[J].水利学报,2008,39(4): 394-400. (ZHANG Ji-ru, ZHU Jie, HUANG Li, et al. Evolution of Micro-pore Structure of Soft Clay and Its Fractal Features under Consolidation[J]. Journal of Hydraulic Engineering, 2008, 39(4): 394-400.(in Chinese))
[9] 王 清,王凤艳,肖树芳.土微观结构特征的定量研究及其在工程中的应用[J].成都理工学院学报,2001,28(2):148-153. (WANG Qing, WANG Feng-yan, XIAO Shu-fang. A Quantitative Study of the Microstructure Characteristics of Soil and Its Application to the Engineering [J]. Journal of Chengdu University of Technology, 2001, 28(2):148-153. (in Chinese))
[10]张先伟,孔令伟,郭爱国,等. 基于SEM和MIP试验结构性黏土压缩过程中微观孔隙的变化规律[J].岩石力学与工程学报,2012,31(2):406-412. (ZHANG Xian-wei, KONG Ling-wei, GUO Ai-guo, et al. Evolution of Microscopic Pore of Structured Clay in Compression Process Based on SEM and MIP Test [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 406-412.(in Chinese))
[11]叶为民,钱丽鑫,陈 宝,等. 高压实高庙子膨润土的微观结构特征[J].同济大学学报(自然科学版),2009, 37(1):31-35. (YE Wei-ming, QIAN Li-xin, CHEN Bao, et al. Characteristics of Micro-structure of Densely Compacted Gaomiaozi Bentonite [J]. Journal of Tongji University (Natural Science), 2009, 37(1): 31-35. (in Chinese))
[12]孔令荣. 饱和软粘土的微结构特性及其微观弹塑性本构模型[D].上海:同济大学,2007. (KONG Ling-rong. Microstructural Behavior of Saturated Soft Clay and an Elasto-Plastic Constitutive Model Considering Microstructure[D]. Shanghai:Tongji University, 2007. (in Chinese))
[13]刘志彬,施 斌,王宝军,等.改性膨胀土微观孔隙定量研究[J].岩土工程学报,2004,26(4):526-530. (LIU Zhi- bin, SHI Bin, WANG Bao-jun, et al. Quantitative Research on Micropores of Modified Expansive Soils[J]. Journal of Geotechnical Engineering, 2004, 26(4): 526- 530.(in Chinese))
[14]田 华,张水昌,柳少波,等. 压汞法和气体吸附法研究富有机质页岩孔隙特征[J].石油学报,2012,33(3): 419-427. (TIAN Hua, ZHANG Shui-chang, LIU Shao-bo, et al. Determination of Organic-rich Shale Pore Features by Mercury Injection and Gas Adsorption Methods[J]. Acta Petrolei Sinica, 2012, 33(3): 419-427. (in Chinese))
[15]唐朝生,施 斌,王宝军,等. 基于SEM土体微观结构研究中的影响因素分析[J]. 岩土工程学报,2008,30 (4): 560-565. (TANG Chao-sheng, SHI Bin, WANG Bao-jun, et al. Factors Affecting Analysis of Soil Microstructure Using SEM[J]. Journal of Geotechnical Engineering, 2008, 30(4): 560-565.(in Chinese))
[16]SING K S W, EVERETT D H, Haul R A, et al. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity[J]. Pure and Applied Chemistry,1985,57 (4):603-619.
[17]BRUNAUER S, EMMETT P H, TELLER E. Adsorption of Gas in Multimolecular Layers[J]. Journal of the American Chemical Society,1938, 60(2): 309-319.
[18]BARRET E P, JOYNER L G, HALLENDA P P. The Determination of Pore Volume and Area Distributions in Porous Substances: Computations from Nitrogen Isotherms[J]. Journal of the American Chemical Society, 1951, 73(1): 373-380.
[19]HORVATH G, KAWAZOE K. Method for the Calculation of Effective Pore Size Distribution in Molecular Sieve Carbon[J]. Journal of Chemical Engineering of Japan, 1983, 16(6): 470-475.
[20]近藤精一,石川达雄,安部郁夫,等.吸附科学[M].李国希,译.北京:化学工业出版社,2010. (SEIICHI K, TATSUO I, IKUO A,et al. Adsorption Science[M].Translated by LI Guo-xi. Beijing: Chemical Industry Press, 2010. (in Chinese))
[21]SING K S W, EVERETT D H, HAUL R A W, et al. IUPAC Recommendations: Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface Area and Porosity [M]. Handbook of Heterogeneous Catalysis, New York: Wiley and Sons, Inc. DOI: 10.1002/9783527610044.hetcat0065.
[22]谭罗荣,孔令伟.特殊岩土工程土质学[M].北京:科学出版社,2006. (TAN Luo-rong, KONG Ling-wei. Special Geotechnical Engineering Geology[M]. Beijing: Science Press,2006. (in Chinese))
[23]NEIMARK A V. Calculating Surface Fractal Dimensions of Adsorbents[J]. Adsorption Science and Technology, 1990, 7(4):210-219.
PDF(1217 KB)

Accesses

Citation

Detail

Sections
Recommended

/