Influence of Seepage Control Measures During Deep-Burial Tunnel Construction on External Water Pressure on Tunnel Lining

LI Ming-wei, LI Yu-feng, CUI Hao-dong, LI Shao-long, SUN Yun

Journal of Changjiang River Scientific Research Institute ›› 2026, Vol. 43 ›› Issue (1) : 202-209.

PDF(7781 KB)
PDF(7781 KB)
Journal of Changjiang River Scientific Research Institute ›› 2026, Vol. 43 ›› Issue (1) : 202-209. DOI: 10.11988/ckyyb.20241186
Basic Theories and Key Technologies for Major Water Diversion Projects

Influence of Seepage Control Measures During Deep-Burial Tunnel Construction on External Water Pressure on Tunnel Lining

Author information +
History +

Abstract

[Objective] The Xianglushan Tunnel is a challenging and key control project of the Central Yunnan Water Diversion Project. Branch Tunnel No.7 of the Xianglushan Tunnel, located in Songgui Town, Heqing County, Dali Prefecture, Yunnan Province, generally lies at a depth of 600-1 300 m, with a maximum burial depth of 1 415 m. High external water pressure is regarded as a major threat to its safety. Existing studies on tunnel external water pressure have mostly assumed homogeneous strata, paying relatively little attention to geological structures. The influence of geological structures—particularly the presence of aquitard layers above the tunnel—remains to be investigated in depth.[Methods] A typical deep-burial section of the Central Yunnan Water Diversion Project was investigated through field observations and numerical simulation to study the external water pressure acting on the tunnel lining. The effects of geological structures and seepage control measures on the external water pressure were analyzed to provide a reference for the design and construction of deep-burial tunnels.[Results] During in-situ drilling, groundwater in the tunnel was identified as fissure groundwater. Obvious water inflow occurred if a borehole intersected water-conducting fissures; otherwise, the boreholes remained essentially dry. Monitoring data from five piezometers installed in the tunnel over nearly one year indicated that the external water pressure around the unlined tunnel during construction was relatively low, only several meters of water head. Numerical simulation of the seepage field revealed that higher rock permeability and shorter distance between the tunnel and water-conducting structures increased both external water pressure and seepage discharge. Impermeable linings, while blocking water, caused an increase in external water pressure. Drainage holes, while reducing external water pressure, resulted in an increase in tunnel seepage discharge. Under specific geological structures and seepage control measures, tunnel excavation and drainage may only cause local groundwater drawdown around the tunnel, without affecting the regional phreatic surface.[Conclusion] In the model of this study, an aquitard layer with relatively low permeability exists above the tunnel, which limits the influence range of tunnel drainage. As a result, drainage only forms a localized desaturation zone between the tunnel and the aquitard, exerting minimal effect on groundwater above the aquitard. This localized desaturation explains the phenomenon observed in tunnel projects in water-rich areas, where the regional phreatic surface is high while the external water pressure acting on the tunnel remains relatively low. Near the tunnel face, equipotential lines are densely spaced, and the hydraulic gradient is relatively large, whereas a smaller gradient prevails behind the face. This indicates that greater seepage pressure is imposed near the tunnel face, explaining why seepage-induced failures frequently occur in this area.

Key words

deep-burial tunnel / tunnel seepage control measures / aquitard lining / external water pressure / numerical simulation / Central Yunnan Water Diversion Project

Cite this article

Download Citations
LI Ming-wei , LI Yu-feng , CUI Hao-dong , et al . Influence of Seepage Control Measures During Deep-Burial Tunnel Construction on External Water Pressure on Tunnel Lining[J]. Journal of Changjiang River Scientific Research Institute. 2026, 43(1): 202-209 https://doi.org/10.11988/ckyyb.20241186

References

[1]
黄威, 孙云, 张建平, 等. 深埋隧洞高外水压力研究进展[J]. 三峡大学学报(自然科学版), 2023, 45(5):1-11.
(HUANG Wei, SUN Yun, ZHANG Jian-ping, et al. Research Review on High External Water Pressure of Deep-buried Tunnels[J]. Journal of China Three Gorges University (Natural Sciences), 2023, 45(5): 1-11.) (in Chinese)
[2]
陈崇希, 刘文波, 彭涛. 确定隧道外水压力的地下水流模型: 读《深埋隧道外水压力计算的解析-数值法》一文随笔[J]. 水文地质工程地质, 2002, 29(5): 62-64.
(CHEN Chong-xi, LIU Wen-bo, PENG Tao. A Groundwater Flow Model for Determining the Tunnel External Water Pressure—Impressions of “the Simulation of Deep Tunnel External Water Pressure by Analytical-numerical Method[J]. Hydrogeology and Engineering Geology, 2002, 29(5): 62-64.) (in Chinese)
[3]
王建宇. 隧道围岩渗流和衬砌水压力荷载[J]. 铁道建筑技术, 2008(2): 1-6.
(WANG Jian-yu. Problems on External Water Pressure on Tunnel Lining[J]. Railway Construction Technology, 2008(2): 1-6.) (in Chinese)
[4]
黄红元. 富水环境下水工隧洞渗流计算及结构外水压力研究[D]. 重庆: 重庆交通大学, 2021.
(HUANG Hong-yuan. Study on Seepage Calculation and External Water Pressure of Structure of Hydraulic Tunnel in Water-rich Environment[D]. Chongqing: Chongqing Jiaotong University, 2021.) (in Chinese)
[5]
SL 279—2016, 水工隧洞设计规范[S]. 北京: 中国水利水电出版社, 2016.
(SL 279—2016, Specification for Design of Hydraulic Tunnel[S]. Beijing: China Water & Power Press, 2016.) (in Chinese)
[6]
张有天. 隧洞及压力管道设计中的外水压力修正系数[J]. 水力发电, 1996, 22(12): 30-34.
(ZHANG You-tian. Correction Factor of External Water Pressure in Design of Tunnel and Penstock[J]. Water Power, 1996, 22(12): 30-34.) (in Chinese)
[7]
张有天. 岩石隧道衬砌外水压力问题的讨论[J]. 现代隧道技术, 2003, 40(3): 1-4, 10.
(ZHANG You-tian. Discussion on External Hydraulic Pressure Upon Rock Tunnel Lining[J]. Modern Tunnelling Technology, 2003, 40(3): 1-4, 10.) (in Chinese)
[8]
董国贤. 水下公路隧道[M]. 北京: 人民交通出版社,1984.
(DONG Guo-xian. Underwater Highway Tunnel[M]. Beijing: China Communications Press,1984.) (in Chinese)
[9]
邹成杰. 水利水电岩溶工程地质[M]. 北京: 水利电力出版社,1994.
(ZOU Cheng-jie. Karst Engineering Geology of Water Conservancy and Hydropower[M]. Beijing: Water Resources and Electric Power Press,1994.) (in Chinese)
[10]
刘立鹏, 汪小刚, 贾志欣, 等. 水岩分算隧道衬砌外水压力折减系数取值方法[J]. 岩土工程学报, 2013, 35(3):495-500.
(LIU Li-peng, WANG Xiao-gang, JIA Zhi-xin, et al. Method to Determine Reduction Factor of Water Pressure Acting on Tunnel Linings Using Water-rock Independent Calculation Methodology[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 495-500.) (in Chinese)
[11]
刘立鹏, 汪小刚, 段庆伟, 等. 隧洞衬砌外水压力的取值方法与应对措施研究[J]. 水利水电技术, 2017, 48(8):63-67,80.
(LIU Li-peng, WANG Xiao-gang, DUAN Qing-wei, et al. Study on Value-selection Method and Countermeasures for External Water Pressure of Tunnel Lining[J]. Water Resources and Hydropower Engineering, 2017, 48(8): 63-67, 80.) (in Chinese)
[12]
顾伟, 董琪, 王媛, 等. 运营期铁路隧道衬砌外水压力折减方法[J]. 科学技术与工程, 2018, 18(12):280-285.
(GU Wei, DONG Qi, WANG Yuan, et al. Reduction Method of External Water Pressure on the Lining of Railway Tunnels during Operating Period[J]. Science Technology and Engineering, 2018, 18(12):280-285.) (in Chinese)
[13]
王建秀, 杨立中, 何静. 深埋隧道衬砌水荷载计算的基本理论[J]. 岩石力学与工程学报, 2002, 21(9):1339-1343.
(WANG Jian-xiu, YANG Li-zhong, HE Jing. Introduction to the Calculation of External Water Pressure of Tunnel Lining[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(9): 1339-1343.) (in Chinese)
[14]
WANG X, TAN Z, WANG M, et al. Theoretical and Experimental Study of External Water Pressure on Tunnel Lining in Controlled Drainage under High Water Level[J]. Tunnelling and Underground Space Technology, 2008, 23(5): 552-560.
[15]
吴金刚, 谭忠盛, 皇甫明. 高水压隧道渗流场分布的复变函数解析解[J]. 铁道工程学报, 2010, 27(9): 31-34, 68.
Abstract
研究目的:在进行高水压山岭隧道支护结构设计时,合理地确定衬砌上作用的水压力是结构设计的关键。本文以深圳市东部过境高速公路的莲塘隧道为工程背景,对高水压隧道渗流场分布进行理论研究。莲塘隧道位于莲塘水厂西南部地段的丘陵地区,并处于深圳断裂带的主要影响带内,断层及节理裂隙发育,岩体破碎。由于临近深圳水库,且地处深圳水库常年水位以下,若采用下穿方案,隧道将长期处于高水头作用之下。因此,对隧道及围岩中的渗流场进行研究对隧道衬砌结构设计与防排水设计有直接的指导意义。研究结论:本文分别采用有限差分岩土软件FLAC3D和经典解析解Harr解对高水压隧道渗流场进行了验证计算。通过计算对比,分别得到了本文解析解和有限差分数值解和Harr解的渗流场分布等值线图,通过比较,最终证明了本文解析解在高水压深埋隧道渗流场计算中的正确性。
(WU Jin-gang, TAN Zhong-sheng, HUANGFU Ming. Analytic Solution of Complex Function to Distribution of Seepage Field of Tunnel with High Water Pressure[J]. Journal of Railway Engineering Society, 2010, 27(9): 31-34, 68.) (in Chinese)
Research purposes: In the design of the supporting structures for the mountain tunnel with high water pressure, how to determine the water pressure value on lining is the key element of the design. For the Liantang Tunnel on the eastern highway in Shenzhen, the distribution of seepage field of Liantang tunnel is studied in theory. The Liantang Tunnel is located in the hilly area of southwest Shenzhen where is the influence area of the Shenzhen fault with developments of fault and joint fissure to break out the surrounding rock. As the tunnel is close to the Shenzhen Reservoir and is under the constant water level, the tunnel will be always affected by the high water pressure in the future if the under-passing scheme is adopted to the tunne.l Therefore, the study on the distribution of seepage fields of the Liantang Tunnel and surrounding rock has the instructive significance to both the structure design and drainage design.<div>Research conclusions: The verifying calculation is carried out separately to seepage field of the tunnel with finite differential geotechnical software package FLAC3D and Harr solution. By calculation comparison, the contour maps of the seepage field distribution made with the analytical solution, the definite differential geotechnical solution and Harr solution are gained respectively. By comparison, the correctness of the analytical solution to the seepage field distribution of deep buried tunnel is proved.</div>
[16]
郑波, 王建宇, 吴剑. 轴对称解对隧道衬砌水压力计算的适用性研究[J]. 现代隧道技术, 2012, 49(1):60-65.
(ZHENG Bo, WANG Jian-yu, WU Jian. A Study of the Applicability of an Axisymmetric Solution for Calculating the Water Pressure on a Tunnel Lining[J]. Modern Tunnelling Technology, 2012, 49(1): 60-65.) (in Chinese)
[17]
应宏伟, 朱成伟, 龚晓南. 考虑注浆圈作用水下隧道渗流场解析解[J]. 浙江大学学报(工学版), 2016, 50(6): 1018-1023.
(YING Hong-wei, ZHU Cheng-wei, GONG Xiao-nan. Analytic Solution on Seepage Field of Underwater Tunnel Considering Grouting Circle[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(6): 1018-1023.) (in Chinese)
[18]
张继勋, 任旭华, 姜弘道, 等. 高外水压力下隧道工程的渗控措施研究[J]. 水文地质工程地质, 2006, 33(6):62-65.
(ZHANG Ji-xun, REN Xu-hua, JIANG Hong-dao, et al. Study on Seepage Control Measure of Tunnel with High External Underground Water Pressure[J]. Hydrogeology & Engineering Geology, 2006, 33(6):62-65.) (in Chinese)
[19]
周亚峰, 苏凯, 伍鹤皋. 水工隧洞钢筋混凝土衬砌外水压力取值方法研究[J]. 岩土力学, 2014, 35(增刊2): 198-203, 210.
(ZHOU Ya-feng, SU Kai, WU He-gao. Study of External Water Pressure Estimation Method for Reinforced Concrete Lining of Hydraulic Tunnels[J]. Rock and Soil Mechanics, 2014, 35(Supp. 2): 198-203, 210.) (in Chinese)
[20]
孙博, 谷玲, 谢金元, 等. 高外水压力下水工隧洞设计理念的初步探讨[J]. 地下空间与工程学报, 2017, 13(增刊2):752-756.
(SUN Bo, GU Ling, XIE Jin-yuan, et al. Preliminary Discussion on Design Concept of Hydraulic Tunnel under High External Water Pressure[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(Supp. 2): 752-756.) (in Chinese)
[21]
伍国军, 陈卫忠, 谭贤君, 等. 饱和岩体渗透性动态演化对引水隧洞稳定性的影响研究[J]. 岩石力学与工程学报, 2020, 39(11): 2172-2182.
(WU Guo-jun, CHEN Wei-zhong, TAN Xian-jun, et al. Effect of the Permeability Dynamic Evolution of Saturated Rock on the Stability of Diversion Tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(11): 2172-2182.) (in Chinese)
[22]
苏凯, 杨逢杰, 年夫喜, 等. 超深埋隧洞防渗排水措施与衬砌外水压力分布规律[J]. 中南大学学报(自然科学版), 2024, 55(6): 2222-2235.
(SU Kai, YANG Feng-jie, NIAN Fu-xi, et al. Anti-seepage and Drainage Measures of Ultra-deep Buried Tunnel and Distribution Law of External Water Pressure of Lining[J]. Journal of Central South University (Science and Technology), 2024, 55(6): 2222-2235.) (in Chinese)
[23]
丁浩, 蒋树屏, 陈林杰. 公路隧道外水压力的相似模型试验研究[J]. 公路交通科技, 2008, 25(10):99-104.
(DING Hao, JIANG Shu-ping, CHEN Lin-jie. Study on Similar Model Test for External Water Pressure of Highway Tunnel[J]. Journal of Highway and Transportation Research and Development, 2008, 25(10):99-104.) (in Chinese)
[24]
高新强, 仇文革, 孔超. 高水压隧道修建过程中渗流场变化规律试验研究[J]. 中国铁道科学, 2013, 34(1): 50-58.
(GAO Xin-qiang, QIU Wen-ge, KONG Chao. Test Study on the Variation Law of Seepage Field during the Construction Process of High Water Pressure Tunnel[J]. China Railway Science, 2013, 34(1): 50-58.) (in Chinese)
[25]
于丽, 方霖, 董宇苍, 等. 基于围岩渗透影响范围的隧道外水压力计算方法模型试验研究[J]. 岩石力学与工程学报, 2018, 37(10): 2288-2298.
(YU Li, FANG Lin, DONG Yu-cang, et al. Research on the Evaluation Method of the Hydraulic Pressure on Tunnel Lining According to the Range of Seepage Field[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(10): 2288-2298.) (in Chinese)
[26]
李林毅, 阳军生, 高超, 等. 排水管堵塞引起的高铁隧道结构变形与渗流场特征模拟试验研究[J]. 岩土工程学报, 2021, 43(4): 715-724.
(LI Lin-yi, YANG Jun-sheng, GAO Chao, et al. Simulation Tests on Structural Deformation and Seepage Field of High-speed Railway Tunnels under Drainage Clogging[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 715-724.) (in Chinese)
[27]
王如宾, 王新越, 张文全, 等. 含交叉断层深埋隧洞围岩衬砌外水压力物理模型试验[J]. 清华大学学报(自然科学版), 2024, 64(7): 1179-1192.
Abstract
为揭示复杂地质条件下富水区深埋隧洞围岩-灌浆圈-衬砌复合系统的外水压力作用规律, 该文自行研制适用于深埋隧洞的大型高外水压力物理模型试验测试系统, 选取滇中引水工程昆明段松林隧洞T<sub>SLT</sub>-005与T<sub>SLT</sub>-006(T<sub>SLT</sub>-005、 T<sub>SLT</sub>-006为断层编号)交叉断层典型洞段为研究对象, 开展含交叉断层深埋隧洞衬砌外水压力物理模型试验, 揭示不同隧洞埋深、 不同地下水位及不同排水条件下, 衬砌的外水压力变化规律, 并给出各工况下的外水压力折减系数建议取值范围。 结果表明: 隧洞埋深和地下水位对衬砌结构的外水压力影响明显, 随着隧洞埋深的增大, 受高地应力影响, 围岩与灌浆圈自身的孔隙度与渗透性下降, 对地下水渗流势能起到较好的削弱作用, 导致衬砌的外水压力整体呈降低趋势; 随着地下水位升高, 衬砌全环的外水压力呈增大趋势, 且由于岩体中细颗粒会被高水压冲散, 因此形成较为连通发育的渗流通道, 渗压增速也会随地下水位的升高而增大; 设置衬砌排水孔可有效降低隧洞拱肩及其以上部位的外水压力, 当隧洞围岩存在交叉断层分布时, 断层带影响的衬砌部位外水压力降低效果受到一定削弱, 且对衬砌的外水压力分布影响较为明显, 在高地下水位工况下, 需重点关注“断层带”对围岩衬砌结构整体的影响范围; 当衬砌结构不排水时, 600 m埋深的外水压力折减系数约为200 m埋深的92%, 设置排水孔后, 600 m埋深的外水压力折减系数约为200 m埋深的85%; 当隧洞围岩存在交叉断层时, 在不排水情况下, 衬砌最不利点的外水压力折减系数建议取值0.95以上, 在排水条件下, 衬砌处的外水压力折减系数建议放宽至0.82; 最后, 利用有限元数值模拟方法对衬砌的外水压力物理模型试验结果进行验证, 在衬砌不排水工况下, 误差约为9.3%, 在衬砌排水工况下, 误差约为7.8%, 表明高外水压力作用物理模型装置和试验结果基本上合理可行。 该研究为富水区深埋隧洞工程的设计施工及运行安全提供科学参考。
(WANG Ru-bin, WANG Xin-yue, ZHANG Wen-quan, et al. Physical Model Experiment of External Water Pressure in Lining Surrounding Rock of a Deep Tunnel with Cross Faults[J]. Journal of Tsinghua University (Science and Technology), 2024, 64(7): 1179-1192.) (in Chinese)
[28]
陈长生, 张海平, 周云, 等. 滇中引水工程香炉山隧洞勘察关键技术[J]. 长江科学院院报, 2022, 39(12): 8-14.
Abstract
滇中引水工程地质构造背景与地震地质条件极为复杂。香炉山隧洞全长62.60 km,最大埋深1 450 m,穿越滇西北横断山脉及金沙江与澜沧江两大流域分水岭,跨越多条区域性深大断裂,是滇中引水工程中单洞最长、埋深最大隧洞,也是目前国内在建水利工程中施工难度最大、地质条件最为复杂的大深埋超长隧洞。结合香炉山隧洞复杂地质条件、存在的主要工程地质问题,以及可能产生的地下水环境影响风险,系统地总结了香炉山隧洞勘察研究过程中采用的基于3S技术的地质遥感解译、大地电磁测深、千米级深孔勘探测试、复杂岩溶区大埋深超长隧洞选线、地下水三维渗流场数值模拟等勘察关键技术和研究方法,创新性地研发了千米级深孔地应力测试技术、深部岩体水文地质参数测试技术以及适用于复杂地质条件下大埋深隧洞的超前地质预报关键技术;形成了一套较为系统、全面的大埋深超长隧洞勘察关键技术研究方法,为类似工程勘察研究工作提供了重要参考及借鉴。
(CHEN Chang-sheng, ZHANG Hai-ping, ZHOU Yun, et al. Key Technologies of Investigating Xianglushan Tunnel ofCentral Yunnan Water Diversion Project[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(12): 8-14.) (in Chinese)
The Central Yunnan Water Diversion Project features extremely complex geological structure background and seismic geological conditions. With a total length of 62.60 km and a maximum buried depth of 1 450 m, Xianglushan tunnel crosses the Hengduan Mountains in northwest Yunnan, the watershed of Jinsha River and Lancang River, and several regional deep faults. It is the longest single tunnel with the largest buried depth in the Central Yunnan Water Diversion Project and is also the most difficult to construct large, deep and super long tunnel with the most complex geological condition in water conservancy projects under construction in China. In view of the major engineering geological problems and the potential risks of groundwater environmental impact, we systematically summarize the key survey technologies including 3S-based geological remote sensing interpretation, magnetotelluric sounding, kilometer-level deep hole exploration and testing, route selection of large deep-buried and super long tunnels in complex karst areas, and numerical simulation of three-dimensional seepage field of groundwater. We also developed some key technologies of advanced geological prediction applicable for large, deep-buried, and long tunnels in complex geological conditions, kilometer-level deep hole geostress testing technology, as well as deep rock hydrogeological parameter testing technology. Such technologies form a whole set of systematic and comprehensive research methods for investigating large buried and super long tunnels.
[29]
王旺盛, 陈长生, 王家祥, 等. 滇中引水工程香炉山深埋长隧洞主要工程地质问题[J]. 长江科学院院报, 2020, 37(9): 154-159.
Abstract
香炉山深埋长隧洞是滇中引水工程总工期控制性工程,隧洞总长62.596 km,最大埋深1 450 m,具有线路长、埋深大、勘察研究范围广、地质构造背景与岩溶水文地质条件复杂、地下水环境影响敏感等工程特点。勘察期通过大范围线路比选和综合勘察测试研究,逐步选定了隧洞线路并基本查明其工程地质与水文地质条件,对隧洞高地震烈度区抗震与穿越活动性断裂抗断问题、涌突水(泥)与地下水环境影响问题、高地应力与硬岩岩爆及软岩大变形问题、高外水压力问题及穿越煤层、膨胀土特殊岩土工程地质问题等进行了深入分析,为隧洞工程设计、施工提供了可靠的技术支撑,为类似深埋长隧洞的相关研究提供参考。
(WANG Wang-sheng, CHEN Chang-sheng, WANG Jia-xiang, et al. Major Engineering Geological Problems of Xianglushan Deep-buried Long Tunnel in Central Yunnan Water Diversion Project[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(9): 154-159.) (in Chinese)
Xianglushan deep-buried long tunnel is a control project for the total construction period of the water diversion project in central Yunnan Province. With a total length of 62.596 km and maximum buried depth of 1 450 m, the tunnel is featured with large survey scope, complex geotectonic background and complicated karst hydrogeological conditions as well as sensitive groundwater environment. In survey period, the tunnel line was selected and its engineering geological and hydrogeological conditions and major engineering geological problems were basically ascertained. In this paper, we probe into such problems including the seismic resistance in high earthquake-intensity area and shear resistance of structures passing through active fractures, the environmental impacts of water inrush and mud intrusion, the high geostress, hard rock burst, large deformation of soft rock, high external water pressure, and the special geotechnical engineering problems of coal stratum and expansive soils. The research result offers a technical support for the design and construction of tunnel and a reference for researches on similar deep-buried long tunnels.
[30]
李建贺, 牛利敏, 王帅, 等. 深埋隧洞穿高压富水断层涌水突泥分析与处置技术[J]. 长江科学院院报, 2024, 41(10): 149-156.
Abstract
针对隧洞穿越高压富水断层涌水突泥破坏性强、可灌性差的难题,以滇中引水工程香炉山隧洞过大栗树断裂次级断层涌水突泥灾害治理为例,通过分析隧洞涌水突泥洞段的地质特征、灾害过程与成因,提出了超前钻探、超前灌浆、超前泄压、超前支护组合处置对策。针对隧洞下半断面围岩碎粉含量高、阻止浆液扩散导致注浆效果不佳的问题,提出了置换式注浆加固技术,即注浆孔分A孔、B孔,通过A孔注浆,B孔泄压并冲出岩粉的方式进行注浆,以利于岩粉排出和浆液扩散,成功解决了香炉山隧洞DLI3+681.5涌水突泥灾害治理技术难题。研究成果对类似地质条件下隧洞涌水突泥灾害治理提供参考。
(LI Jian-he, NIU Li-min, WANG Shuai, et al. Management Technology for Water and Mud Inrush in Deeply Buried Tunnel Crossing High-pressure Water-rich Faults[J]. Journal of Changjiang River Scientific Research Institute, 2024, 41(10): 149-156.) (in Chinese)
[31]
韩钢, 黄书岭, 丁秀丽, 等. 香炉山隧洞5#支洞应急抢险段围岩参数反演及稳定性分析[J]. 长江科学院院报, 2022, 39(12):56-61,67.
Abstract
在建的滇中引水工程香炉山隧洞5#支洞穿越活动断裂带,地质条件极为复杂,施工过程中发生过严重的涌水突泥灾害,围岩稳定问题极为突出,严重制约施工进度和工程安全。为深入系统地研究5#支洞应急抢险洞段合理的围岩力学参数及隧洞稳定性情况,充分利用现场监测及物探资料,采用基于神经网络和遗传算法的位移反演方法确定了应急抢险洞段围岩的力学参数;并在此基础上,模拟施工开挖支护全过程,进行了围岩稳定性分析。结果表明:在当前开挖支护条件下,5#支洞应急抢险洞段整体处于稳定状态,除桩号K0+501—513洞段右边墙围岩变形量较大外,其余部位围岩变形量整体&lt;15 cm;塑性区深度在2~5 m范围内;支护结构受力整体处于正常水平。相关研究结果对于5#支洞后续洞段或相近条件隧洞安全快速施工具有指导意义。
(HAN Gang, HUANG Shu-ling, DING Xiu-li, et al. Inversion Analysis of Rock Mass Mechanical Parameters and Stability Analysis of Emergency Rescue Section in Adit 5# of Xianglushan Tunnel[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(12): 56-61, 67.) (in Chinese)
The 5# adit of Xianglushan tunnel under construction of Central Yunnan Water Diversion Project features complex geological conditions as it crosses active fault zones. Severe water-mud bursting disasters and prominent stability problems of surrounding rock hinder the construction progress and project safety. According to field monitoring and geophysical exploration data, we determined the mechanical parameters of surrounding rock at emergency rescue section by using inversion analysis based on neural network and genetic algorithm; on this basis, we simulated the whole process of construction, excavation, and support, and analysed the surrounding rock stability. Results manifested that the surrounding rock mass of emergency rescue tunnel section of adit 5# was in an overall stable state. Except that the deformation of surrounding rock on the right side of the tunnel section K0+501-513 was relatively large, the deformation of other parts was less than 15 cm in general; the depth of plastic zones was within the range of 2-5 m; and the stress of support structures was at a normal level. The research findings would guide the safe and rapid construction of subsequent tunnel sections of 5# adit or tunnels with similar geological conditions.
PDF(7781 KB)

Accesses

Citation

Detail

Sections
Recommended

/