Prediction of Shield Tunneling Attitude Based on WM-CTA Method

GAO Su, CHEN Cheng

Journal of Changjiang River Scientific Research Institute ›› 2025, Vol. 42 ›› Issue (7) : 181-189.

PDF(8399 KB)
PDF(8399 KB)
Journal of Changjiang River Scientific Research Institute ›› 2025, Vol. 42 ›› Issue (7) : 181-189. DOI: 10.11988/ckyyb.20240952
Engineering Safety and Disaster Prevention

Prediction of Shield Tunneling Attitude Based on WM-CTA Method

Author information +
History +

Abstract

[Objective] The attitude of a shield machine is a critical parameter that significantly affects tunnel construction, directly determining construction safety and project quality. To ensure that shield tunneling closely aligns with the designed alignment and to improve engineering construction quality, this study proposes a novel shield attitude prediction model, called WM-CTA, based on deep learning technology. [Methods] The WM-CTA model primarily consists of two frameworks: a data preprocessing module (Wavelet Transform and Maximum Information Coefficient) and a prediction module (Convolutional Neural Network and Attention Mechanism). The preprocessing module, composed of Wavelet Transform (WT) and the Maximum Information Coefficient (MIC) algorithms, was used to perform noise reduction and parameter correlation analysis on the raw data, thereby generating enhanced inputs. The Convolutional Neural Network (CNN) integrated with a channel-wise attention mechanism explored parameter weight differences and extracted local data features. Subsequently, the Temporal Convolutional Network (TCN) was employed to capture temporal dependencies and dynamic variations in the data. Finally, the Attention Mechanism (AM) was applied to extract key temporal node information. The model’s prediction performance was validated using monitoring data from a section of a shield tunnel under construction in Shenyang. Experiments were conducted on data for noise reduction and correlation analysis, followed by analysis of the model’s prediction performance and generalization ability. [Results] Experimental results showed that the monitoring curves processed with wavelet transform had improved smoothness with reduced frequency of abrupt changes between data points. Correlation analysis indicated that shield construction parameters exerted greater influence on shield attitude than soil parameters, enabling dimensionality reduction of input parameters. Compared with four baseline models, the proposed WM-CTA model achieved minimum MAE and RMSE and maximum R2 value. [Conclusion] The experiments verify that the WM-CTA model delivers optimal prediction performance with high computational efficiency. Furthermore, the model exhibits strong generalization ability, providing valuable references for similar future engineering projects.

Key words

shield tunneling attitude / WM-CTA prediction model / deep learning / noise reduction / correlation analysis / generalization ability

Cite this article

Download Citations
GAO Su , CHEN Cheng. Prediction of Shield Tunneling Attitude Based on WM-CTA Method[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(7): 181-189 https://doi.org/10.11988/ckyyb.20240952

References

[1]
潘国荣, 唐杭. 一种基于联合平差的盾构姿态计算方法[J]. 山东科技大学学报(自然科学版), 2013, 32(6):48-56.
(PAN Guo-rong, TANG Hang. A New Method of Shield Attitude Calculation Based on Combined Adjustment[J]. Journal of Shandong University of Science and Technology (Natural Science), 2013, 32(6):48-56.(in Chinese))
[2]
丰土根, 胡锦健, 张箭. 基于深度学习的超大直径盾构姿态预测研究[J]. 中南大学学报(自然科学版), 2024, 55(4):1477-1491.
(FENG Tu-gen, HU Jin-jian, ZHANG Jian. Research on Attitude Prediction of Super Large Diameter Shield Based on Deep Learning[J]. Journal of Central South University(Science and Technology), 2024, 55(4):1477-1491.(in Chinese))
[3]
WANG L, PAN Q, WANG S. Data-driven Predictions of Shield Attitudes Using Bayesian Machine Learning[J]. Computers and Geotechnics, 2024, 166: 106002.
[4]
FU Y, CHEN L, XIONG H, et al. Data-driven Real-time Prediction for Attitude and Position of Super-large Diameter Shield Using a Hybrid Deep Learning Approach[J]. Underground Space, 2024, 15: 275-297.
[5]
沈翔, 袁大军. 盾构水平偏角变化对盾构-土相互作用影响[J]. 中国公路学报, 2020, 33(3): 132-143.
Abstract
为了探明盾构掘进过程中机-土相互作用的机理,指导盾构姿态的控制和调整,针对水平偏角变化对盾构与土相互作用的影响这一问题,对作用于盾壳周围土压力的理论计算方法以及水平偏角预测模型进行研究。首先基于地基反力曲线,通过等效弹簧近似建立盾构与土的相互作用模型,同时基于几何分析可计算盾构水平偏角变化过程中周围土层发生的位移,从而得到作用于盾构外壳的周围土压力的理论计算方法。然后引用改进的松动土压力计算方法,得到盾构初始土压力的计算方法,解决盾构水平偏角计算的初始边界问题,并结合土对盾构作用荷载的计算方法得到盾构水平偏角计算方法。基于所建立的理论计算模型,对盾构机质量、地层类型以及地层开挖损失率等因素对盾构-土相互作用的影响进行分析和讨论。最后,结合济南地铁R2线盾构隧道工程,对盾构的水平偏角以及相关掘进参数进行实时监测,并与盾构水平偏角理论值进行对比分析。研究结果表明:盾构质量以及地层开挖损失率对盾构在水平面上进行姿态的影响较小;不同地层类型以及地层的土压力系数对盾壳与土相互作用的影响较大;通过工程应用发现盾构水平偏角理论值的变化趋势与实测值基本一致,但由于盾构自身施加的调姿弯矩无法完全作用于盾构机,因此理论值普遍大于实测值。
(SHEN Xiang, YUAN Da-jun. Influence of Shield Yawing Angle Variation on Shield-soil Interaction[J]. China Journal of Highway and Transport, 2020, 33(3): 132-143.(in Chinese))
To determine the shield-soil interaction mechanism during the shield tunneling process, and to guide the control and adjustment of the shield attitude, considering the influence of the yawing angle variation on the shield-soil interaction, the theoretical calculation method of the earth pressure around the shield shell and the prediction model of the yawing angle were studied. First, based on the foundation reaction curve, an equivalent spring approximation model was used to establish the shield-soil interaction model. The displacement of the surrounding soil layer during the yawing angle variation was calculated based on the geometric analysis. The theoretical calculation method of the surrounding earth pressure acting on the shield shell was established. Then, the improved loose earth pressure calculation method was conducted, and the calculation method of the initial earth pressure of the shield was established. The initial boundary problem of the yawing angle calculation was solved, and the calculation method of the yawing angle of was obtained by combining the calculation method of the action load of the soil with that of the shield. Then, based on the established theoretical calculation model, the effects of shield mass, stratum type, and stratum excavation loss rate on the shield-soil interaction were analyzed and discussed. Finally, combined with the Jinan Metro R2 shield tunnel project, the yawing angle of the shield and other driving parameters were monitored in real time and compared with the theoretical value of the shield yawing angle. The results demonstrate that the influence of shield quality and formation excavation loss rate on the shield attitude in the horizontal plane is small; the different types of strata and the earth pressure coefficient of the stratum have a greater influence on the shield-soil interaction; the trend change of the theoretical value of the shield yawing angle is basically consistent with that of its measured value. However, because the bending moment applied by the shield itself cannot fully affect the shield machine, the theoretical value is generally greater than the measured value.
[6]
潘国荣, 范伟. 融合倾斜仪数据的盾构姿态严密解算模型[J]. 同济大学学报(自然科学版), 2018, 46(10): 1433-1439.
(PAN Guo-rong, FAN Wei. A Rigorous Calculating Model of Inclinometer-data Fusion in Tunnel-boring-machine Attitude[J]. Journal of Tongji University (Natural Science), 2018, 46(10): 1433-1439.(in Chinese))
[7]
钟小春, 易斌斌, 竺维彬, 等. 粉细砂地层盾构机姿态突变判断方法[J]. 华中科技大学学报(自然科学版), 2023, 51(7): 42-47.
(ZHONG Xiao-chun, YI Bin-bin, ZHU Wei-bin, et al. Mutation Judgement Methods for Shield Tunneling through Fine Silt Stratum[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(7): 42-47.(in Chinese))
[8]
祝勇. 盾构近距离侧穿桥桩数值模拟与施工控制技术研究[J]. 铁道建筑技术, 2018(4): 33-36, 52.
(ZHU Yong. Numerical Simulation Research on Subway Shield Tunnelling Side-crossing nearby Bridge Pile and Its Construction Control Technology[J]. Railway Construction Technology, 2018(4): 33-36, 52.(in Chinese))
[9]
KONG X, LING X, TANG L, et al. Random Forest-based Predictors for Driving Forces of Earth Pressure Balance (EPB) Shield Tunnel Boring Machine (TBM)[J]. Tunnelling and Underground Space Technology, 2022, 122: 104373.
[10]
吴忠坦, 吴贤国, 刘俊, 等. 基于随机森林-NSGA-Ⅲ的盾构姿态优化控制[J]. 现代隧道技术, 2023, 60(5): 48-57.
(WU Zhong-tan, WU Xian-guo, LIU Jun, et al. Shield Attitude Optimization and Control Based on Random Forest-NSGA-Ⅲ[J]. Modern Tunnelling Technology, 2023, 60(5): 48-57.(in Chinese))
[11]
曹化锦. 基于机器学习和非支配排序遗传算法的盾构姿态预测与优化[J]. 铁道建筑, 2023, 63(7):93-97.
(CAO Hua-jin. Prediction and Optimization of Shield Posture Based on Machine Learning and Non-dominated Sorting Genetic Algorithm[J]. Railway Engineering, 2023, 63(7): 93-97.(in Chinese))
[12]
张军, 李懋鹏. 基于机器学习的盾构自主纠偏与参数研究[J/OL]. 中外公路.(2024-01-26)[2024-06-20].
(ZHANG Jun, LI Mao-peng. Research on Autonomous Deviation Correction and Parameters of Shield Tunneling Based on Machine Learning[J/OL]. Journal of China & Foreign Hihgway. (2024-01-26)[2024-06-20].(in Chinese))
[13]
吴惠明, 常佳奇, 李刚, 等. 基于支持向量机的盾构掘进姿态预测与施工参数优化方法[J]. 隧道建设(中英文), 2021, 41(增刊1): 11-18.
(WU Hui-ming, CHANG Jia-qi, LI Gang, et al. Prediction of Driving Posture and Optimization of Construction Parameters for Shield Based on Support Vector Machine[J]. Tunnel Construction, 2021, 41(Supp.1): 11-18.(in Chinese))
[14]
潘秋景, 李晓宙, 黄杉, 等. 机器学习在盾构隧道智能施工中的应用: 综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.
(PAN Qiu-jing, LI Xiao-zhou, HUANG Shan, et al. Application of Machine Learning to Intelligent Shield Tunnelling: Review and Prospects[J]. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(3): 10-30.(in Chinese))
[15]
DAI Z, LI P, ZHU M, et al. Dynamic Prediction for Attitude and Position of Shield Machine in Tunneling: A Hybrid Deep Learning Method Considering Dual Attention[J]. Advanced Engineering Informatics, 2023,57:102032.
[16]
XU J, ZHANG Z, ZHANG L, et al. Predicting Shield Position Deviation Based on Double-path Hybrid Deep Neural Networks[J]. Automation in Construction, 2023, 148: 104775.
[17]
CHEN L, TIAN Z, ZHOU S, et al. Attitude Deviation Prediction of Shield Tunneling Machine Using Time-aware LSTM Networks[J]. Transportation Geotechnics, 2024, 45: 101195.
[18]
ZHOU C, XU H, DING L, et al. Dynamic Prediction for Attitude and Position in Shield Tunneling: A Deep Learning Method[J]. Automation in Construction, 2019, 105: 102840.
[19]
白星振, 赵康, 葛磊蛟, 等. 基于EWT-GRU-RR的配电网短期电力负荷预测模型[J]. 山东科技大学学报(自然科学版), 2023, 42(5):77-87.
(BAI Xing-zhen, ZHAO Kang, GE Lei-jiao, et al. Short-term Power Load Forecasting Model Based on EWT-GRU-RR[J]. Journal of Shandong University of Science and Technology (Natural Science), 2023, 42(5): 77-87.(in Chinese))
[20]
梁树超, 翟保豫, 李国庆, 等. 叶尔羌河流域水文气象要素演变规律及其与水力发电量的关联度分析[J]. 长江科学院院报, 2025, 42(2):23-28,61.
Abstract
为解析叶尔羌河流域水文气象要素的演变规律及其与水力发电量的关联度,利用Mann-Kendall趋势检验和最大互信息系数等多种方法详细研究了流域各项水文气象要素的趋势性、突变性及其与水力发电量的关联度。结果表明:1960—2017年流域降水量、气温和径流量均呈显著上升趋势,蒸散发和风速则显著下降。其中洪水期的降水和径流上升趋势为0.49 mm/a和0.86 mm/a,是枯水期的4.1倍和2.4倍。气温和径流在所有季节均呈现显著上升趋势,蒸散发显著上升趋势主要体现在夏季和秋季。除风速外其他要素在20世纪90年代附近均出现了突变年份,其中降水量存在多个突变年份。水力发电量与径流量直接相关,而径流量又与积雪、气温和土壤温度等相关,当气温升高时冰雪融化加速,导致径流增大,从而提高水力发电量。
(LIANG Shu-chao, ZHAI Bao-yu, LI Guo-qing, et al. Study on The Change Characteristics of Hydrometeorological Elements and its Hydropower Correlation in the Yarkant River Basin[J]. Journal of Changjiang River Scientific Research Institute, 2025, 42(2):23-28,61.(in Chinese))
[21]
WANG G, SUN L, WANG A, et al. Lithium Battery Remaining Useful Life Prediction Using VMD Fusion with Attention Mechanism and TCN[J]. Journal of Energy Storage, 2024, 93: 112330.
[22]
黄学平, 辛攀, 吴永明, 等. 融合残差与VMD-TCN-BiLSTM混合网络的鄱阳湖总氮预测[J]. 长江科学院院报, 2025, 42(3): 59-67, 75.
Abstract
对湖泊水质进行准确、高效的预测,对于保护水资源、维护生态平衡以及促进经济发展等方面都具有重要意义。为此提出了一种基于模态分解、多维特征选择、时间卷积网络(TCN)、自注意力机制、双向长短期神经网络(BiLSTM)和双向门控循环单元(BiGRU)的湖泊总氮(TN)组合预测模型。首先,采用变分模态分解将TN原始序列分解成不同频率的本征模态函数(IMF),以降低原始序列的复杂度和非平稳性;随后,通过随机森林算法为每个IMF选择相关性强的特征,将筛选出的特征矩阵输入到添加自注意力机制的TCN-BiLSTM混合网络中进行建模,充分提取数据中隐藏的关键时序信息;最后,为进一步提升模型预测精度,采用BiGRU网络学习残差序列的细节特征,将残差与模型预测结果融合得到最终的预测值。以鄱阳湖都昌监测站的水质数据为例进行试验分析,结果表明本文模型相比于其他模型对TN浓度预测效果提升明显,其平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R2)分别为0.03 mg/L、0.049 mg/L、0.992。
(HUANG Xue-ping, XIN Pan, WU Yong-ming, et al. Predicting Total Nitrogen Concentration in Poyang Lake Using a Hybrid Network Integrating Residual and VMD-TCN-BiLSTM[J]. Journal of Changjiang River Scientific Research Institute, 2025, 42(3): 59-67, 75.(in Chinese))
[23]
王树英, 汪来, 潘秋景. 基于数据驱动的盾构竖向姿态预测深度学习模型[J]. 中南大学学报(自然科学版), 2024, 55(2):485-499.
(WANG Shu-ying, WANG Lai, PAN Qiu-jing. Data-driven Deep Learning Model of Shield Vertical Attitude Prediction[J]. Journal of Central South University(Science and Technology), 2024, 55(2):485-499.(in Chinese))
[24]
汪来, 王树英, 潘秋景, 等. 基于AM-BiLSTM模型的块石回填土区盾构姿态预测研究[J]. 铁道科学与工程学报, 2023, 20(8):2948-2960.
(WANG Lai, WANG Shu-ying, PAN Qiu-jing, et al. Research of Prediction of Shield Attitude Passing the Soil-rock Mixture Backfill Areabased on the AM-BiLSTM[J]. Journal of Railway Science and Engineering, 2023, 20(8):2948-2960.(in Chinese))
[25]
GAO X, SHI M, SONG X, et al. Recurrent Neural Networks for Real-time Prediction of TBM Operating Parameters[J]. Automation in Construction, 2019, 98: 225-235.
[26]
GAO B, WANG R, LIN C, et al. TBM Penetration Rate Prediction Based on the Long Short-term Memory Neural Network[J]. Underground Space, 2021, 6(6): 718-731.
[27]
LIAO J, HU J, CHEN P, et al. Prediction of the Transient Emission Characteristics from Diesel Engine Using Temporal Convolutional Networks[J]. Engineering Applications of Artificial Intelligence, 2024, 127: 107227.
PDF(8399 KB)

Accesses

Citation

Detail

Sections
Recommended

/