PDF(4994 KB)
Response of Runoff Coefficient to Urban Underlying Surface Change Based on BP Neural Network
ZHANG Lin, DING Bing, DENG Jin-yun, YAO Shi-ming, WANG Jia-sheng, LI Li-gang, WANG Zhao-hui
Journal of Changjiang River Scientific Research Institute ›› 2025, Vol. 42 ›› Issue (10) : 32-37.
PDF(4994 KB)
PDF(4994 KB)
Response of Runoff Coefficient to Urban Underlying Surface Change Based on BP Neural Network
[Objective] Against the background of rapid urbanization, changes in the urban underlying surface constitute a significant factor influencing runoff processes, yet their mechanisms remain inadequately studied. [Methods] Taking Qingshan District of Wuhan City as a representative study area, this paper used remote sensing technology, GIS analysis, and a BP neural network model to quantitatively assess urban underlying surface changes during the typical study period and analyze its impact on the runoff coefficient. [Results] (1) Under urban development, land use in the study area from 2002 to 2017 shifted overall from permeable to impermeable surfaces. Vegetation, rooftops, and other land-use types fluctuated, whereas water bodies shrank year by year. Construction of the sponge city demonstration zone in 2015 slowed this trend. (2) The runoff coefficient was jointly affected by underlying surface changes and rainfall. However, urban rainfall changed little over short timescales, the impervious surface ratio was the dominant factor. As the area ratio of high-runoff land use (e.g., hardened ground) increased and that of low-runoff land use (e.g., vegetation, green space) decreased, the runoff coefficient rose yearly—from 0.399 in 2009 to 0.535 in 2017—showing that land-use change directly altered the runoff coefficient to some extent. (3) After sponge city interventions, the annual runoff coefficient showed a decreasing trend; in 2017 it was 0.535, 0.051 lower than in 2014. [Conclusions] Sponge city construction reduces the runoff coefficient by expanding highly permeable surfaces and adding storage volume, thereby mitigating the adverse impacts of urban development on stormwater regulation capacity. The study offers scientific guidance for urban planning and flood-control drainage system design, and technical support for urban hydrological cycles and water-resource management.
runoff coefficient / underlying surface / BP neural network model / remote sensing technology / land use type / urban planning
| [1] |
张丽平, 孙英君, 赵培华, 等. 基于地理国情数据的城市土地利用变化与地表降雨径流关联分析[J]. 国土与自然资源研究, 2024(1):32-37.
(
|
| [2] |
苏定江, 刘希, 董佳, 等. 海绵城市年径流污染总量削减率定义及计算方式探讨[J]. 中国给水排水, 2023, 39(24): 93-99.
(
|
| [3] |
温达文, 杨建涛, 王森, 等. 海绵城市年径流总量控制率指标分解探析[J]. 人民珠江, 2023, 44(12):80-86,100.
(
|
| [4] |
余胜男, 樊仕宝, 张玉英. 城市化发展背景下缺资料地区径流量分析[J]. 水利规划与设计, 2023(11): 107-111.
(
|
| [5] |
刘宏志. 植被和降雨类型对地表径流和土壤侵蚀的影响研究[J]. 陕西水利, 2023(10): 112-114.
(
|
| [6] |
梅超, 石虹远, 李瑞栋, 等. 基于数值试验的降雨径流过程对不透水面空间分布的响应分析[J]. 水资源保护, 2024, 40(1):86-92.
(
|
| [7] |
赵源媛. 辽东无径流资料山区小流域设计径流系数计算模型的应用[J]. 水利技术监督, 2023, 31(6): 143-146.
(
|
| [8] |
桂海娇, 张翔, 王瑶, 等. 改进的径流系数法在城市小流域设计洪水中的应用研究[J]. 武汉大学学报(工学版), 2023, 56(8):978-986.
(
|
| [9] |
张力元. 快速城市化地区生态水文模型的构建及应用[D]. 郑州: 华北水利水电大学, 2023.
(
|
| [10] |
万思思, 王炳亮, 石慧群. 基于SWAT模型径流模拟的苦水河流域水文要素研究[J]. 绿色科技, 2023, 25(10):242-247.
(
|
| [11] |
沈黎达. 城市复杂下垫面子汇水区划分及其对径流过程影响的模拟研究[D]. 杭州: 杭州师范大学, 2023.
(
|
| [12] |
李显鸿, 崔松云, 郭财秀, 等. 松华坝流域植被覆盖度变化对区域径流量的驱动响应关系[J]. 水利规划与设计, 2023(1):47-50,63.
(
|
| [13] |
燕超, 胡海波, 徐晓梅, 等. 模拟降雨条件下城市下垫面径流系数变化规律[J]. 中国水土保持科学(中英文), 2022, 20(5):24-30.
(
|
| [14] |
殷书梅, 龚莉, 张翔. 快速城市化流域综合径流系数确定方法比较研究[J]. 人民长江, 2022, 53(8): 87-93.
(
|
| [15] |
王思思, 侯爽, 王榕. 城市绿地产流影响因素与径流系数取值的多方法比较[J]. 环境工程, 2021, 39(12): 84-90, 242.
(
|
/
| 〈 |
|
〉 |