PDF(7840 KB)
Impact of Reservoir Water Level Changes on Deformation of Shuibuya High Concrete-faced Rockfill Dam
PAN Jia-jun, HAN Bing, WANG Yan-li, ZUO Yong-zhen, WANG Jun-peng, ZHU Yue
Journal of Changjiang River Scientific Research Institute ›› 2025, Vol. 42 ›› Issue (9) : 114-121.
PDF(7840 KB)
PDF(7840 KB)
Impact of Reservoir Water Level Changes on Deformation of Shuibuya High Concrete-faced Rockfill Dam
[Objective] Reservoir water levels fluctuate periodically every year during the operation period. Existing research has shown that the late-term deformation of rockfill dams is mainly caused by the prolonged water cycle loading. To thoroughly understand the impact of periodic reservoir water level fluctuations on long-term dam deformation, this study combines qualitative and quantitative analyses using nearly 17 years of deformation monitoring data from the Shuibuya concrete-faced rockfill dam (CFRD). [Methods] Qualitative analysis focused on the impact of reservoir water level changes on deformations of the dam interior and its downstream face. Quantitative analysis employed the cross-correlation method to investigate the relationship between water level variation and settlement at the section of maximum dam height. [Results] (1) Late-stage settlement deformation was mainly concentrated in the central upstream and upper downstream areas of the dam body, and the settlement and horizontal displacement increments in the upper downstream converged more slowly. (2) The late-stage deformation of dam body was primarily caused by reservoir water level fluctuations. At most measurement points at different elevations within the dam body, the settlement evolution curves exhibited fluctuations with the same frequency as the water level changes and lagged behind them. (3) The correlation coefficients between the dam body settlement increments and reservoir water levels were calculated, verifying a strong correlation between them. (4) The settlement and horizontal displacement increments on the downstream face of the dam were mainly concentrated at the top of the section of maximum dam height, and the influence of reservoir water level variation increased with elevation. [Conclusion] This study analyzes the deformation patterns of high CFRDs under reservoir water-level variations, and the findings provide valuable insights for the late-stage deformation monitoring and safety control in similar projects.
water level fluctuation / Shuibuya concrete-faced rockfill dam / long-term deformation / cross-correlation analysis method / monitoring data
| [1] |
杨启贵, 常晓林, 周创兵, 等. 水布垭超高面板堆石坝变形控制方法研究[J]. 岩土力学, 2010, 31(增刊2):247-253.
(
|
| [2] |
郦能惠. 高混凝土面板堆石坝设计理念探讨[J]. 岩土工程学报, 2007, 29(8): 1143-1150.
(
|
| [3] |
周伟, 花俊杰, 常晓林, 等. 水布垭高面板堆石坝运行期工作性态评价及变形预测[J]. 岩土工程学报, 2011, 33(增刊1): 72-77.
(
|
| [4] |
|
| [5] |
周墨臻, 张丙印, 张宗亮, 等. 超高面板堆石坝面板挤压破坏机理及数值模拟方法研究[J]. 岩土工程学报, 2015, 37(8): 1426-1432.
(
|
| [6] |
程展林, 潘家军. 水布垭面板堆石坝应力变形监测资料分析[J]. 岩土工程学报, 2012, 34(12): 2299-2306.
(
|
| [7] |
徐琨, 杨启贵. 水布垭面板堆石坝坝体后期变形时空分布规律研究[J]. 长江科学院院报, 2021, 38(7): 51-57.
通过分析水布垭面板堆石坝的长期实测变形资料,对最大坝高断面和下游坝面的后期变形情况进行研究,揭示了坝体后期变形的时空分布规律。研究表明:沉降是坝体后期变形的主要形式;后期沉降增量基本随高程升高而增大,但后期水平位移增量的分布未表现出与高程的相关性;下游坝面后期变形阶段的三向变形增量的分布规律与面板堆石坝一般变形规律类似;最大坝高断面和下游坝面的变形发生时序存在差异,下游坝面的变形大多在后期变形阶段发生,而最大坝高断面的沉降主要发生在后期变形阶段之前;此外,坝内各测点的年沉降增量演化均呈现出一定的波动性;下游坝面测点的历年沉降增量有明显分布规律,且各测点的年沉降增量基本呈逐年减小趋势。根据坝体后期变形时空分布规律,适当提高坝体中上部,特别是中上部下游侧筑坝料的填筑标准,对降低坝体后期变形能起到良好效果。
(
By analyzing long-term monitoring data, we examined the post-operation deformation (defined as the deformation in stable running stage) of the maximum-height section and the downstream surface of Shuibuya concrete-faced rockfill dam (CFRD), and hence revealed the spatiotemporal distributions of post-operation deformation of the dam. We found that settlement is the dominant form of deformation in the stable running stage of the dam. The increment of settlement in stable running stage increased with the rise of elevation, while the increment of horizontal displacement bore no correlation with elevation. The increment of tri-directional deformation of the downstream surface in stable running stage was similar to that of general deformation of CFRD. The deformation time of maximum-height section differed from that of downstream surface: the deformations of downstream surface mostly occurred in the later stage, while the settlement of the maximum-height section was observed mainly before the later stage. Moreover, the annual settlement increment of each monitoring point fluctuated. The distribution of the annual settlement increment of the downstream surface was obvious, and the annual settlement increment of almost all monitoring points at downstream surface showed a decreasing trend with time. According to the research results, we recommend to improve the compaction quality of dam materials in the middle-upper part of the dam, especially on the downstream side in order to control the post-operation deformation of the dam.
|
| [8] |
汪明元, 黄斌, 陈琴, 等. 水布垭超高混凝土面板堆石坝的长期变形特性[J]. 水力发电学报, 2010, 29(4):167-172,206.
(
|
| [9] |
潘家军, 饶锡保, 徐晗, 等. 坝料流变对高面板堆石坝的应力变形影响研究[J]. 西北地震学报, 2011, 33(增刊1): 281-284, 294.
(
|
| [10] |
米占宽, 沈珠江, 李国英. 高面板堆石坝坝体流变性状[J]. 水利水运工程学报, 2002(2): 35-41.
(
|
| [11] |
周伟, 胡颖, 杨启贵, 等. 高混凝土面板堆石坝流变机理及长期变形预测[J]. 水利学报, 2007, 38(增刊1): 100-105.
(
|
| [12] |
程展林, 丁红顺. 堆石料蠕变特性试验研究[J]. 岩土工程学报, 2004, 26(4): 473-476.
(
|
| [13] |
程展林, 左永振, 丁红顺, 等. 堆石料湿化特性试验研究[J]. 岩土工程学报, 2010, 32(2):243-247.
(
|
| [14] |
左永振, 张贵科, 孙向军, 等. 高围压状态下堆石料湿化变形特性[J]. 长江科学院院报, 2024, 41(4): 119-123.
堆石料是土石坝的主要填筑材料,其湿化变形特性对土石坝蓄水期变形有显著影响。对两河口水电站的2种筑坝堆石料,采用单线法分别开展围压为0.5、1.0、2.0、3.0 MPa的大型三轴湿化变形试验。结果表明:随着应力水平和围压增加,堆石料轴向湿化变形和体积湿化变形都显著增大,与中低围压下的湿化变形规律相近。高围压下的各向等压湿化变形,堆石料体积湿化应变与围压在双对数坐标中仍服从直线关系,轴向湿化应变与围压不再满足直线关系。高围压下的偏压湿化变形,堆石料体积湿化应变与轴向湿化应变之比一般在0~2范围内,与围压呈现近似水平发展趋势,随应力水平的增加而逐渐降低。采用六参数湿化模型,仍能准确表达轴向湿化变形、体积湿化变形随应力水平、围压的变形规律。
(
|
| [15] |
张延亿, 邓刚, 温彦锋, 等. 球应力循环条件下堆石料变形特性的试验研究[J]. 水力发电学报, 2018, 37(3):106-112.
(
|
| [16] |
温彦锋, 张延亿. 堆石料的长期变形特性研究[J]. 水利水电技术, 2019, 50(8): 84-95.
(
|
| [17] |
杨启贵, 王艳丽, 左永振. 水循环荷载作用下高面板堆石坝长期变形特性研究[J]. 岩土工程学报, 2024, 46(6): 1339-1346.
(
|
| [18] |
赵博超, 殷旗, 邓刚, 等. 库水位升降对堆石坝心墙的水平变形影响分析[J]. 长江科学院院报, 2016, 33(4):86-90,94.
为研究库水位升降对堆石坝心墙的水平变形影响,将土石坝心墙类比为竖直悬臂梁,上游侧受到上游坝壳不均匀的分布土压力和随时间变化的水压力,下游侧也同理受到下游坝壳相应土压力和水压力。研究表明库水位上涨导致心墙发生向下游转动趋势,上游土压力逐渐减小,下游土压力逐渐增大,当二者分别达到主动土压力和被动土压力的极限状态时,土体即将产生滑动,定义此时的心墙挠度为理论心墙稳定挠度f<sub>s</sub>;若心墙实际水平位移量大于f<sub>s</sub>,则可以大致判定心墙两侧土体发生了相对滑动,可能导致产生局部纵向裂缝趋势。假设土石坝加固工程中采用的混凝土防渗墙的工况和条件类似,研究成果可直接应用于水平变形量计算并简单评估安全性。
(
The core wall of earth-rockfill dam is considered as a vertical cantilever beam, the upstream side of which is controlled by the pockety earth pressure of the upstream shell and the time-varying water pressure, and the downstream side is also controlled by the corresponding earth pressure of the downstream shell and the water pressure similarly. When the reservoir water level rises and the core wall has a tendency to turn to the downstream side, the upstream earth pressure gradually decreases and the downstream earth pressure gradually increases. Once the earth pressure on both sides reaches the limit active and passive earth pressure respectively, slippage is likely to take place, and the core wall deflection at this time is defined as the safe deflection <i>f</i><sub>s</sub>. If the measured actual lateral displacement of the core wall is larger than <i>f</i><sub>s</sub>, we can roughly determine that relative sliding of the soil on both sides of core wall exists, which may generate local longitudinal crack. The research result can be applied directly to the calculation of horizontal deformation and safety assessment for concrete core wall of similar conditions.<br/><br/>
|
| [19] |
朱晟, 王永明, 徐骞. 粗粒筑坝材料的增量流变模型研究[J]. 岩土力学, 2011, 32(11): 3201-3206.
(
|
| [20] |
朱晟. 水布垭面板堆石坝施工与运行性状反演研究[J]. 岩石力学与工程学报, 2011, 30(增刊2):3689-3695.
(
|
| [21] |
王晨辉. 考虑库水位循环升降的面板堆石坝应力变形分析[J]. 陕西水利, 2021(11):28-29,35.
(
|
| [22] |
张博, 朱晟. “蓄水-泄水”循环荷载作用下高面板堆石坝的稳定性分析[J]. 水电能源科学, 2018, 36(11):81-83,80.
(
|
| [23] |
李炎隆, 卜鹏, 吴海波, 等. 面板堆石坝混凝土面板脱空影响因素敏感性分析[J]. 应用力学学报, 2022, 39(6): 1108-1116.
(
|
| [24] |
杨启贵, 刘宁, 孙役, 等. 水布垭面板堆石坝筑坝技术[M]. 北京: 中国水利水电出版社, 2010.
(
|
| [25] |
|
/
| 〈 |
|
〉 |