Water-Salt Migration and Deformation Characteristics of Saline Soil under Different Replenishment Conditions

YANG Bao-cun, JIANG Jian-bing, YANG Xiao-song, LI Bo-yi

Journal of Changjiang River Scientific Research Institute ›› 2025, Vol. 42 ›› Issue (8) : 118-127.

PDF(8089 KB)
PDF(8089 KB)
Journal of Changjiang River Scientific Research Institute ›› 2025, Vol. 42 ›› Issue (8) : 118-127. DOI: 10.11988/ckyyb.20240691
Rock-Soil Engineering

Water-Salt Migration and Deformation Characteristics of Saline Soil under Different Replenishment Conditions

Author information +
History +

Abstract

[Objective] This study aims to investigate the water-salt migration and deformation characteristics of desert saline soil in southern Xinjiang under the combined effects of water-salt replenishment conditions and salt-freeze-thaw cycles. [Methods] According to the types of saline soil and the distribution characteristics of groundwater and salt in the Aral region of southern Xinjiang Autonomous Prefecture, we selected silty sand as the research subject and prepared synthetic sulfate saline soil specimens to conduct cyclic salt-freeze-thaw experiments under two different salt replenishment conditions to simulate secondary soil salinization, namely, groundwater (saline solution) replenishment and engineering replacement (underlying saline soil) replenishment. The water-salt migration features, phase changes, and deformation characteristics of silty sulfate saline soil under the two conditions were analyzed. [Results] Under saline solution replenishment condition, as the concentration of the replenishment solution increased, the migration height of water and salt decreased. The soil deformation characteristics exhibited initial salt-induced swelling followed by settlement, with the maximum salt-induced swelling deformation of 0.21 mm occurring at a 5% solution concentration. Under saline soil replenishment condition, as the sodium sulfate content in the soil increased, the reduction in water and salt content in the lower layer increased, and the soil deformation was characterized by settlement. The maximum settlement deformation of -1.37 mm occurred at a saline soil content of 1%. [Conclusion] Compared to saline solution replenishment, saline soil replenishment results in greater thermal sensitivity of the soil. Under saline solution replenishment condition, the migration of water and salt in soil pores and the trends of deformation and failure occur more rapidly than those under saline soil replenishment condition. Therefore, replacing the sulfate saline soil foundation with an overlying layer of salt-free silty sand can suppress the sulfate-induced frost heave. However, the thickness of the salt-free silty sand layer should exceed the critical depth of thermal influence. In engineering practice, when silty sand—a soil type prone to settlement deformation—is used as an overlying replacement layer to suppress salt-induced frost heave deformation of sulfate saline soil, attention should be paid to particle gradation and compaction of replacement soil, and the implementation of salt-blocking and drainage measures. This research provides a reference for the engineering prevention and control of secondary soil salinization in southern Xinjiang.

Key words

silty sulfate soil / freeze-thaw cycle / water and salt migration / deformation characteristics / Southern Xinjiang

Cite this article

Download Citations
YANG Bao-cun , JIANG Jian-bing , YANG Xiao-song , et al. Water-Salt Migration and Deformation Characteristics of Saline Soil under Different Replenishment Conditions[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(8): 118-127 https://doi.org/10.11988/ckyyb.20240691

References

[1]
GB 50021—2001,岩土工程勘察规范[S]. 2009年版. 北京: 中国建筑工业出版社, 2009.
(GB 50021—2001(2009), Code for Investigation of Geotechnical Engineering[S]. Beijing: China Architecture & Building Press, 2009.(in Chinese))
[2]
陈伟志, 李安洪, 李楚根, 等. 无砟轨道粗颗粒盐渍土路基设计方法[J]. 水文地质工程地质, 2017, 44(6):58-63,69.
(CHEN Wei-zhi, LI An-hong, LI Chu-gen, et al. Design Methods of Coarse Grained Saline Soil Subgrade in Ballastless Track[J]. Hydrogeology & Engineering Geology, 2017, 44(6):58-63, 69.(in Chinese))
[3]
RICHARDS L A. Capillary Conduction of Liquids through Porous Mediums[J]. Physics, 1931, 1(5): 318-333.
[4]
CORWIN D L, RHOADES J D. The Use of Computer-assisted Mapping Techniques to Delineate Potential Areas of Salinity Development in Soils: II.Field Verification of the Threshold Model Approach[J]. Hilgardia, 1988, 56(2):18-32.
[5]
NASSAR I N, HORTON R. Simultaneous Transfer of Heat, Water, and Solute in Porous Media: I. Theoretical Development[J]. Soil Science Society of America Journal, 1992, 56(5): 1350-1356.
[6]
包卫星, 谢永利, 杨晓华. 天然盐渍土冻融循环时水盐迁移规律及强度变化试验研究[J]. 工程地质学报, 2006, 14(3): 380-385.
(BAO Wei-xing, XIE Yong-li, YANG Xiao-hua. A Laboratory Test Study on Water and Salt Migration in Natural Saline Soils and Associated Shear Strength Changes under Freezing and Thawing Cycles[J]. Journal of Engineering Geology, 2006, 14(3): 380-385.(in Chinese))
[7]
王景辉, 张卫兵, 唐莲, 等. 水盐运移对硫酸盐渍土盐-冻胀规律的影响[J]. 长江科学院院报, 2021, 38(6):108-115.
Abstract
为研究水盐运移情况下硫酸盐渍土盐-冻胀规律,采用室内土柱冻融试验,利用teros-12传感器及位移计测定冻融循环过程中土体含水率、电导率、温度和位移的变化,分析了水盐运移规律及其对土体盐-冻胀变形的影响。试验结果表明:在自上而下的冻结方式中,土体底部水分向冻结锋面移动,带动盐分向上聚积,同时土体体积含水率和电导率随温度的升降循环存在明显“滞回”现象。冻结阶段土体发生膨胀,竖向变形可分为3个阶段:①调整阶段,由生成芒硝引起;②快速变形阶段,由生成芒硝与冰晶共同作用所致;③缓慢变形阶段,由生成少量冰晶所致。融化阶段土体竖向变形以一定融陷速率发生快速融沉。含硫酸钠盐渍土冻融循环过程中,竖向变形随时间的变化关系呈现“桃尖型”趋势,且每次冻融土体竖向变形速率基本一致。随冻融次数的增加,盐-冻胀率也不断增加。土体含盐量越高对土体竖向变形的影响越显著。本研究可为揭示含硫酸盐渍土盐分和水分随温度变化的“滞回”现象以及水-盐-热-力耦合模型的建立提供数据支撑。
(WANG Jing-hui, ZHANG Wei-bing, TANG Lian, et al. Frost Heaving and Hysteresis Effect of Sulfate Saline Soil Affected by Water and Salt Transport[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(6):108-115.(in Chinese))
The regularities of water and salt migration in sulfate saline soil as well as their impacts on the frost heave of soil were investigated via indoor soil column test. The changes in moisture content, electrical conductivity, temperature, and displacement during the freeze-thaw cycles were measured by teros-12 and displacement meter. The experimental results demonstrated that in the freezing process from top to bottom, the bottom water moved toward the freezing front, driving the salt accumulating upwards. Meanwhile, the cycles of temperature rising and falling generated a notable hysteresis effect on volumetric moisture content and electrical conductivity of soil. The soil swelled during freezing, and the vertical deformation can be divided into three stages: the adjustment stage caused by the formation of mirabilite; the rapid deformation stage induced by the combined action of mirabilite and ice crystal; the gradual deformation stage resulted from a small amount of ice crystals. During melting, the vertical deformation of soil mass underwent swift melting at a certain melting rate. For saline soil containing sodium sulfate, the curve of vertical deformation during freeze-thaw cycles against time presented a peach-shaped trend, and the vertical deformation rate of each cycle was basically consistent. The salt frost heaving rate increased with the proceeding of freezing and thawing. Higher salt content had more evident impact on vertical deformation. The research findings offer data support for revealing the hysteresis effect and also for the establishment of water-salt-thermo-mechanics coupling model.
[8]
田秋林, 朱世煜, 陆军, 等. 西北寒旱区盐渍土水盐迁移规律研究[J]. 公路, 2019, 64(8): 22-27.
(TIAN Qiu-lin, ZHU Shi-yu, LU Jun, et al. Study on Water and Salt Transfer Law of Asphalt Road in Cold and Drought Saline Area in Northwest China[J]. Highway, 2019, 64(8): 22-27.(in Chinese))
[9]
MOREIRA P H S, et al.VAN GENUCHTEN M T, ORLANDE H R B, Bayesian Estimation of the Hydraulic and Solute Transport Properties of a Small-scale Unsaturated Soil Column[J]. Journal of Hydrology and Hydromechanics, 2016, 64(1): 30-44.
[10]
OVERDUIN P P, KANE D L, VAN LOON W K P. Measuring Thermal Conductivity in Freezing and Thawing Soil Using the Soil Temperature Response to Heating[J]. Cold Regions Science and Technology, 2006, 45(1): 8-22.
[11]
冉武平, 李爽, 王亚强, 等. 重塑低液限粉土水盐迁移试验研究[J]. 新疆大学学报(自然科学版)(中英文), 2021, 38(2): 229-234.
(RAN Wu-ping, LI Shuang, WANG Ya-qiang, et al. Experimental Study on Water and Salt Migration of Remodeled Low Liquid Limit Silt[J]. Journal of Xinjiang University (Natural Science Edition) (in Chinese and English), 2021, 38(2): 229-234.(in Chinese))
[12]
任亚军, 张卫兵. 单向冻结条件下硫酸钠盐渍土的冻结温度试验研究[J]. 长江科学院院报, 2023, 40(3): 124-130, 137.
Abstract
硫酸钠盐渍土具有明显的随季节温度变化而发生土体结构改变的特性,给工程造成较大危害。为了研究单向冻结条件下硫酸钠盐渍土的冻结温度特性,在室内配制初始含水率分别为15%、17%、19%、21%,含盐量分别为0%、1%、2%、3%、5%的硫酸盐渍土试样,采用可控温冰柜进行单向冻结试验。结果表明:①同一土体,不同位置处冻结温度相同,但达到冻结温度所需时间存在略微差异。②初始含水率和含盐量对硫酸钠盐渍土冻结温度有很大的影响,当硫酸钠含盐量为1%和2%时,冻结温度随初始含水率的增加呈“先陡后缓”型变化趋势,并在最优初始含水率时达到最大值,之后冻结温度随初始含水率变化曲线趋于平缓;当含盐量较高(5%)时,冻结温度随初始含水率增加近似呈线性增加趋势。③硫酸钠盐渍土冻结温度随含盐量的增加而降低,且盐量为1%~2%时,不同初始含水率土体冻结温度及达到冻结温度所需时间随含盐量均呈“归一性”变化趋势。在计算硫酸钠盐渍土冻结温度时,应将硫酸钠溶液视为非理想稀溶液。在同一初始含水率条件下,对硫酸钠含盐量与冻结温度按三次多项式进行拟合吻合度较高。该研究成果可为硫酸盐渍土地区工程建设提供参考。
(REN Ya-jun, ZHANG Wei-bing. Experimental Study on Freezing Temperature of Sodium Sulfate SalineSoil under Unidirectional Freezing Condition[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(3): 124-130, 137.(in Chinese))
[13]
张恒. 硫酸钠盐渍土盐胀冻胀机理及电化学防治技术研究[D]. 广州: 华南理工大学, 2020.
(ZHANG Heng. Study on the Mechanism of Salt Swelling and Frost Heaving of Sodium Sulfate Saline Soil and Its Electrochemical Prevention and Control Technology[D]. Guangzhou: South China University of Technology, 2020.(in Chinese))
[14]
TB 10621—2014, 高速铁路设计规范[S]. 北京: 中国铁道出版社, 2015.
(TB 10621—2014, Code for Design of High Speed Railway[S]. Beijing: China Railway Publishing House, 2015.(in Chinese))
[15]
张莎莎, 杨晓华, 戴志仁. 天然粗颗粒盐渍土多次冻融循环盐胀试验[J]. 中国公路学报, 2009, 22(4):28-32.
Abstract
为了给在粗颗粒盐渍土地区修筑高等级公路提供技术参考,通过对312国道主干线嘉峪关至安西段一级公路沿线的天然粗颗粒盐渍土进行室内基本工程性质分析,选取有代表性的天然粗颗粒盐渍土,分别进行室内模拟季节交替和昼夜温差变化的多次冻融循环试验及有无附加荷载时的单次降温盐胀试验研究,从不同角度对天然粗颗粒盐渍土进行盐胀规律分析。结果表明:天然粗颗粒氯化物硫酸盐渍土在多次冻融循环时具有明显的体缩现象;上覆附加荷载对粗颗粒氯化物硫酸盐渍土盐胀的抑制作用可以达到80%以上;多次冻融循环后的水分、盐分在土柱剖面中的迁移呈现出不完全对应的关系。
(ZHANG Sha-sha, YANG Xiao-hua, DAI Zhi-ren. Freezing-thawing Cycles and Salt Expansion Test of Crude Coarse Grain Clay Salty Soil[J]. China Journal of Highway and Transport, 2009, 22(4):28-32.(in Chinese))
In order to provide technological reference for the design and construction of advanced level highway in the areas of crude coarse grain clay salty soil, based on the analysis of basic laboratory engineering character of crude coarse grain clay salty soil samples collected from Jiayuguan to Anxi section in G312, China, the representative crude coarse grain clay salty soil samples were selected for the freezing-thawing cycles test which lasted for 48 or 24 hours and were also selected for salt expansion tests with and without additional load. The salt expansion laws of crude coarse grain clay salty soil were researched by three kinds of testing methods. Results show that through freezing-thawing cycles test, crude coarse grain clay chloride sulfate salty soil has the phenomenon of volume contraction; the amount of salt expansion for crude coarse grain clay salty soil under additional covering load exceeds 80%. Comparing without additional load, the moving patterns of moisture contents and salt contents in soil column are different after several freezing-thawing cycles.
[16]
雷过, 张卫兵, 李晓, 等. 冻融-干湿循环下硫酸盐渍土强度劣化的宏微观响应[J]. 长江科学院院报, 2023, 40(6): 154-159, 165.
Abstract
冻融-干湿循环是引起硫酸盐渍土强度劣化的主要原因,而土体微观孔隙结构与强度之间有紧密的联系。通过无侧限抗压强度试验、压汞试验、电镜扫描(SEM)试验,采用全局优化法(UGO)分析数据,ImageJ2X处理SEM图像,探究了冻融-干湿循环下硫酸盐渍土强度劣化的宏微观响应关系。结果表明:①冻融-干湿循环作用下,无侧限抗压强度随含盐量呈现先增大后减小的变化趋势,当压实度较低时强度峰值对应的含盐量低;从孔隙分布得出,1~10 μm的孔隙占比为强度劣化的阈值,当其占比>50%时强度出现劣化,且劣化现象不可逆。②冻融-干湿作用下的无侧限抗压强度值与微观参数的歪度、结构优度间存在相关性,无侧限抗压强度与歪度呈现正相关,与结构优度呈负相关,且结构优度比歪度对强度影响更加显著。③影响无侧限抗压强度宏观指标劣化程度的微观参数依次为结构优度、歪度、分选系数、平均孔喉半径。本研究从定量分析的层面探究了硫酸盐渍土的宏微观响应关系,为进一步研究盐渍土工程性质提供参考。
(LEI Guo, ZHANG Wei-bing, LI Xiao, et al. Macro-and-microscopic Responses of Strength Deterioration of Sulphate Saline Soils under Freeze-thaw and Dry-wet Cycles[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(6): 154-159, 165.(in Chinese))
[17]
慈军, 张远芳, 那姝姝. 冻融循环条件下罗布泊天然盐渍土的盐冻胀规律研究[J]. 水资源与水工程学报, 2016, 27(5):194-197.
(CI Jun, ZHANG Yuan-fang, NA Shu-shu. Law of Salt Expansion of Lop Nor’s Nature Saline Soil under Condition of Freeze-thaw Cycle[J]. Journal of Water Resources and Water Engineering, 2016, 27(5):194-197.(in Chinese))
[18]
李治斌, 刘利骄, 黄帅, 等. 冻结二灰固化碳酸盐渍土及损伤模型研究[J]. 长江科学院院报, 2024, 41(7):118-125.
Abstract
在寒区工程中,盐-冻耦合效应往往会放大盐渍土体的强度损失。因此,考虑探究冻结作用下二灰固化碳酸盐渍土抗压性能的变化规律,以固化剂掺量、温度和加载速率作为影响因素,对二灰固化盐渍土进行了无侧限抗压试验,并提出一种考虑温度和加载速率的二灰固化盐渍土损伤本构模型。结果表明:石灰和粉煤灰能明显提高碳酸盐渍土的抗压强度,且使得改良土的应力-应变曲线由应变弱软化变为应变明显软化,当掺入3%石灰和12%粉煤灰时对碳酸盐渍土的固化效果最显著;温度和加载速率显著影响二灰固化土的抗压强度和弹性模量,三者之间关系可用非线性函数表达;二灰固化土抗压强度的影响因素按照重要性排序为温度>固化剂掺量>加载速率,且温度对改良土的影响远大于固化剂掺量和加载速率;所构建的二灰固化土损伤模型能较好地反映土体的应力应变关系和损伤变量的变化趋势。
(LI Zhi-bin, LIU Li-jiao, HUANG Shuai, et al. Investigation on Carbonated Lime-ash Solidified Frozen Soil and Damage Constitutive Model[J]. Journal of Changjiang River Scientific Research Institute, 2024, 41(7):118-125.(in Chinese))
[19]
应赛, 周凤玺, 文桃, 等. 硫酸盐渍土降温过程中的盐胀与冻胀特性[J]. 长江科学院院报, 2021, 38(6):116-122.
Abstract
为研究降温过程中硫酸盐渍土盐胀与冻胀的内在联系,以冻结温度作为土体盐胀与冻胀的分界点,通过改变降温过程中盐渍土的水盐含量,控制盐胀与冻胀变形相对大小,开展了一系列盐渍土冻结变形试验,分析了水盐变化过程中,土体盐胀与冻胀的变化规律。结果表明降温过程中的盐胀与冻胀存在叠加效应,即总变形与总结晶体积之间不满足正相关关系,总变形受盐胀与冻胀强弱关系的影响,满足盐胀与冻胀的均势规律,即在盐胀变形与冻胀变形相等时,盐、冻胀总变形最小,总变形与盐胀比之间满足“M”形变化规律。研究结果对深入理解盐、冻胀变形的机理,建立盐、冻胀变形计算模型,以及开展盐、冻胀变形病害防治具有积极意义。
(YING Sai, ZHOU Feng-xi, WEN Tao, et al. Salt Expansion and Frost Heave in Cooling Sulfate Saline Soil[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(6):116-122.(in Chinese))
The aim of this study is to explore the connection between salt expansion and frost heave in cooling sulfate saline soil. Freezing deformation tests are conducted on sulfate saline soil samples to examine the variations of salt expansion and frost heave of soil under varying water and salt content. The salt expansion and frost heave are controlled by changing the water content and salt content in the freezing process. Freezing temperature is set as the demarcation point identifying between salt expansion and frost heave. Results reveal a duplicate effect between salt expansion and frost heave in the freezing process, i.e. there is no positive correlation between total deformation of samples and crystalline volume. Total deformation obeys the law of the balance of power between salt expansion and frost heave, which means that total deformation reaches the minimum when salt expansion deformation equals frost heave deformation. The curve between total deformation and ratio of salt expansion displays an M-shape. The research findings are of active significance for further understanding the mechanism, building models, and hazard prevention of salt expansion and frost heave.
[20]
王玉龙, 常立君, 李舒洁. 冻融循环作用下上覆荷载对盐渍土水盐迁移及变形规律的影响研究[J]. 水利水电技术(中英文), 2022, 53(2):142-153.
(WANG Yu-long, CHANG Li-jun, LI Shu-jie. Influence from Overlying Load on Law of Water-salt Migration and Deformation of Salinized Soil under Effect of Freeze-thaw Cycle[J]. Water Resources and Hydropower Engineering, 2022, 53(2): 142-153.(in Chinese))
[21]
陈伟志, 张莎莎, 李安洪. 温度循环下压实粗粒盐渍土水盐迁移与变形响应[J]. 岩土力学, 2022, 43(增刊2): 74-84, 94.
(CHEN Wei-zhi, ZHANG Sha-sha, LI An-hong. Water and Salt Migration and Deformation Response of Compacted Coarse-grained Saline Soil under Temperature Cycle[J]. Rock and Soil Mechanics, 2022, 43(Supp. 2): 74-84, 94.(in Chinese))
[22]
肖泽岸, 赖远明. 冻融和干湿循环下盐渍土水盐迁移规律研究[J]. 岩石力学与工程学报, 2018, 37(增刊1): 3738-3746.
(XIAO Ze-an, LAI Yuan-ming. Study on Water and Salt Transfer Mechanism in Saline Soil under Freezing-thawing and Dry-wet Conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(Supp. 1): 3738-3746.(in Chinese))
[23]
杨晓华, 刘伟, 张莎莎, 等. 温度变化对粗粒硫酸盐渍土路基变形影响分析[J]. 中国公路学报, 2020, 33(3):64-72.
Abstract
粗粒硫酸盐渍土路基在环境温度变化下易出现盐胀、沉陷等变形问题,其对路基正常使用造成的影响不容忽视。针对此问题,依托伊朗德黑兰-库姆-伊斯法罕高速铁路项目,在施工现场选取试验段,开展路基温度、水分的长期监测,分析路基温度和含水率随时间的变化规律。在此基础上,利用自主设计的温度变化试验装置,采用现场路基填料,开展室内温度变化循环试验,对粗粒硫酸盐渍土的变形特性进行研究。结果表明:监测期间,试验段路基温度的敏感深度为0.22 m,深度为1.0 m以内的路基含水率变化较大;在9个周期的试验过程中,试样深度在20 cm范围内的温度和含水率随时间的变化更为显著,且随着试验温度的变化,试样温度的变化存在一定的滞后性;含盐量为1.5%的土样在第1,2次温度变化循环试验中表现为盐-冻胀变形,其最大盐-冻胀变形量为0.128 mm,而含盐量为3%的土样在前6次循环试验中均表现为盐-冻胀变形,其最大盐-冻胀变形量为0.232 mm;由于受到温度、冰盐相变、含盐量、土颗粒组成、试验周期等多重因素的影响,9个试验周期后,不同含盐量的试样最终均呈现沉陷变形,其中,含盐量为1.5%试样的最终沉陷变形量为0.585 mm,是含盐量为3%试样最终沉陷变形的5.42倍。该研究结果可为相关工程提供一定的技术参考和借鉴。
(YANG Xiao-hua, LIU Wei, ZHANG Sha-sha, et al. Influence of Temperature Change on Deformation of Coarse-grained Sulfate Saline Soil Subgrade[J]. China Journal of Highway and Transport, 2020, 33(3): 64-72.(in Chinese))
Coarse-grained sulfate soil roadbeds are prone to excessive deformation problems, such as salt expansion and subsidence owing to changes in ambient temperature, and the impact on normal use of the roadbed cannot be ignored. In view of these problems, a test section was selected at the construction site of the Tehran-Qom-Isfahan high-speed railway project in Iran, and long-term monitoring of the roadbed temperature and moisture content was carried out. The variation of temperature and moisture content of the roadbed with time was analyzed. Based on this, a self-designed temperature change test device and field roadbed filling were used to conduct indoor temperature change cycle model tests to study the deformation characteristics of coarse-grained sulfate saline soil. The results show that during the monitoring period, the sensitive depth of the subgrade temperature in the field test is 0.22 m, and the moisture content of the subgrade within the depth of 1.0 m varies greatly. During the nine-cycle test, the temperature and moisture content of the sample depth in the range of 20 cm become more significant over time. However, with a change of the test temperature, there is a certain hysteresis in the change of sample temperature. The soil sample with 1.5% salt content shows salt expansion deformation and frost heave deformation in the first and second temperature change cycle tests, with a maximum deformation of 0.128 mm. The soil sample with 3% salt content exhibits such deformation in the first six cycles of the test, with a maximum deformation of 0.232 mm. Due to the influence of multiple factors such as temperature, ice-salt transformation, salt content, soil particle composition, and test cycle, specimens with different salt content eventually experience subsidence deformation after nine test cycles. The subsidence deformation of the sample with 1.5% salt content is 0.585 mm, which is 5.42 times the final subsidence deformation of the soil with 3% salt content. The research results can provide certain technical references for related projects.
[24]
江建兵, 杨晓松, 肖旻, 等. 冻融循环作用下粉砂质硫酸盐渍土变形特性研究[J]. 水利水电技术(中英文), 2024, 55(1):180-190.
(JIANG Jian-bing, YANG Xiao-song, XIAO Min, et al. Study on Deformation Characteristics of Silty Sulfate Soil under Freeze-thaw Cycle[J]. Water Resources and Hydropower Engineering, 2024, 55(1): 180-190.(in Chinese))
[25]
杨保存. 南疆盐渍土路基盐—冻胀变形特性研究[D]. 重庆: 重庆大学, 2008.
(YANG Bao-cun. Study on Salt-Frost Heave Deformation Characteristics of Saline Soil Subgrade in Southern Xinjiang[D]. Chongqing: Chongqing University, 2008.(in Chinese))
PDF(8089 KB)

Accesses

Citation

Detail

Sections
Recommended

/