PDF(8144 KB)
Preliminary Study of Ecological Dredging Technology for the Three Gorges Reservoir
ZHOU Wang-min, LI Xiao-meng, TAN Hao-yue, LUO Ping-an, ZHAO Ke-feng, LU Shu-qiang
Journal of Changjiang River Scientific Research Institute ›› 2025, Vol. 42 ›› Issue (7) : 60-68.
PDF(8144 KB)
PDF(8144 KB)
Preliminary Study of Ecological Dredging Technology for the Three Gorges Reservoir
[Objective] Traditional dredging methods for reservoir sedimentation can cause resuspension of sediments, leading to the release of nutrients, and then affect the water environment. Proposing a reasonable and feasible ecological dredging scheme is important to prevent water environmental pollution caused by sediment dredging, which is a fundamental requirement for the sustainable exploitation of reservoir sediments. To address the issues of sedimentation in the Three Gorges Reservoir and secondary water pollution caused by traditional dredging methods, this study focuses on typical sediment-accumulated river sections and explores ecological dredging technologies suitable for deep-water and complex environments. [Methods] This study comparatively evaluated the characteristics, applicability, and environmental friendliness of existing reservoir dredging technologies. Based on the segmented sedimentation characteristics of the Three Gorges Reservoir, it proposed an environmentally friendly ecological dredging technology suitable for the reservoir. Typical sediment-deposited river sections in Fuling and Zhongxian were selected as representative areas. A two-dimensional hydrodynamic-suspended sediment mathematical model was established to simulate the dredging effects under different dredging equipment, and an ecological dredging technical scheme for these areas was developed. [Results] The results showed that ecological dredging technology outperforms traditional methods in precision control, pollution prevention, and resource utilization. The study recommended using pneumatic dredging for the near-dam section, pneumatic or jet dredging for the middle section, and pneumatic or eco-friendly cutter suction dredging for the upper section and fluctuating backwater area. Simulations indicated that pneumatic dredging had the least impact on suspended sediment concentration and diffusion. Based on the simulation results, comprehensive dredging recommendations were proposed, including equipment selection, construction timing, residual water treatment, and sediment resource utilization. [Conclusion] The ecological dredging scheme proposed in this paper can provide a reference for ensuring the storage capacity of the Three Gorges Reservoir and its long-term effective use, as well as sustaining comprehensive benefits. It shows strong potential for promotion and practical engineering application value.
Three Gorges Reservoir / reservoir dredging / ecological dredging technology / two-dimensional hydrodynamic-suspended sediment mathematical model / suspended solids concentration
| [1] |
林莉, 董磊, 潘雄, 等. 三峡水库蓄水后库区水沙变化及其生态环境响应特征[J]. 湖泊科学, 2023, 35(2): 411-423.
(
|
| [2] |
|
| [3] |
黄仁勇, 张细兵. 三峡水库运用前后进出库水沙变化分析[J]. 长江科学院院报, 2011, 28(9): 75-79.
(
|
| [4] |
张为, 朱敬一, 薛居理, 等. 三峡水库1990—2021年洪峰沙峰异步特性分析[J]. 水科学进展, 2023, 34(6):850-857.
(
|
| [5] |
金中武, 郭超, 周银军, 等. 三峡水库清淤及淤积泥沙综合利用可行性研究[J]. 中国水利, 2024(3):29-33.
(
|
| [6] |
胡兴娥, 曹瑞. 三峡工程蓄水运用20年综合效益发挥与展望[J]. 长江科学院院报, 2024, 41(6): 1-9.
三峡工程自2003年蓄水发电至今已运行20 a,初步设计主要功能全部实现,并适应运行条件变化和发展需求持续优化运行方式,防洪、发电、航运、水资源利用等综合效益全面发挥。截至2023年底,三峡工程累计拦洪运用66次,拦蓄洪水超2 088亿m3,确保了荆江河段防洪安全,极大减轻了长江中下游防洪压力;累计发出清洁电能超16 600亿kW·h,相当于节约标准煤5.1亿t,减少二氧化碳排放13.3亿t;极大改善了库区与长江中游航道条件,累计通过货运量超20亿t,有力促进了长江航运快速发展;枯水期累计向下游补水约3 400亿m3,有效保障了长江中下游供水安全;生态调度成效显著,四大家鱼资源量明显恢复。为了应对频发的极端水文事件带来的风险和挑战,确保三峡工程长期安全运行和持续发挥巨大综合效益,从推进气象水文预报技术研究与应用、三峡水库调度运行方案优化、创新成果转化运用、智慧化管理等方面提出了下一步工作展望。
(
|
| [7] |
曹慧群, 周建军. 挖粗沙减淤在三峡水库中的数值模拟研究[J]. 水力发电学报, 2012, 31(3): 131-136.
(
|
| [8] |
袁晶, 许全喜, 董炳江, 等. 近20年来三峡水库泥沙淤积及其对库区的影响[J]. 湖泊科学, 2023, 35(2):632-641.
(
|
| [9] |
刘增辉, 倪福生, 徐立群, 等. 水库清淤技术研究综述[J]. 人民黄河, 2020, 42(2): 5-10.
(
|
| [10] |
李中华, 楚维国, 舒畅, 等. 滇池环保清淤工程工艺技术创新[J]. 水运工程, 2018(增刊1):131-134, 140.
(
|
| [11] |
朱波, 张继良, 肖义, 等. 武汉水果湖环保疏浚工程[J]. 水利水电快报, 2008, 29(1): 17-20.
(
|
| [12] |
黄俊杰. 浅水湖泊生态清淤试点研究: 以巢湖为例[J]. 山东化工, 2021, 50(13): 246-248.
(
|
| [13] |
金中武, 任实, 吴华莉, 等. 三峡水库淤积排沙及河型转化规律[J]. 长江科学院院报, 2020, 37(10): 9-15, 27.
三峡水库泥沙排沙在其论证和运行阶段一直是关注的热点问题。根据上游来水来沙、实测固定断面和河床质地取样等资料,分析了三峡水库运用以来进出库水沙变化、总体淤积和排沙规律、沿程淤积规律、河型转化规律等,并将初步设计论证研究成果与其他成果进行了对比分析。研究成果表明:三峡水库运用后,入库年径流量与建库前变化不大,但年输沙量锐减60%,来沙减少的趋势仍将持续;三峡水库平均年库容损失率为0.3%,在世界范围内是非常低的,可确保水库长期使用;三峡水库的年淤积量与入库沙量基本呈线性关系,汛期蓄水位越高则其斜率越大;三峡库尾河段总体呈冲刷状态,泥沙主要淤积在常年回水区,尤其在河道开阔断面;部分分汊河道发生了河型转化,淤积后河道总体朝单一、归顺方向发展。研究成果可为三峡水库运行管理和研究提供支撑,也为同类型水库决策提供参考。
(
Sedimentation and sediment delivery in the Three Gorges Reservoir (TGR) has always been a hot issue during its demonstration and operation. In this study, long-term series field measured hydrological and terrain data before and after the TGR’s impoundment are used to investigate the trend of runoff and sediment load transport into the TGR. The effect of sedimentation on the TGR is discussed. The result demonstrates that despite rare changes in annual runoff, the total amount of sediment load transport into the TGR shows a significant reducing trend (by 60%) after the impoundment of the TGR. Analysis of the field data shows that the average sediment delivery ratio of the TGR is 24% during 2003-2018 and the annual loss in storage capacity is about 0.3%. Annual sedimentation is in a linear relation with incoming sediment, and the slope of the relation is larger when water level gets higher in flood season. Sediment mainly deposits in river reaches with wide cross sections, especially in the permanent backwater area where the flow velocity is relatively small.In some branching reaches,the river pattern develops towards unification.It is expected that this study will help optimizing the TGR operations and improving its comprehensive function.
|
| [14] |
|
| [15] |
任实, 胡兴娥, 邢龙, 等. 三峡水库坝前深水清淤疏浚技术研究[J]. 长江科学院院报, 2023, 40(1): 24-28.
水库泥沙淤积问题普遍存在于全球水库中,影响防洪、发电、航运、水资源利用等水库功能的正常发挥,尤其是坝前泥沙淤积,可能会堵塞电站进水口和泄流底孔,严重影响水库发电效益和泄洪安全。对于大型水库而言,坝前水深一般在100 m以上,高效安全地进行坝前深水清淤疏浚是有效控制水库泥沙淤积、保持水资源可持续利用的一种重要途径。研究了气动力式深水清淤技术,并在三峡水库坝前深水环境进行了清淤试验。研究结果表明气动力式清淤技术可在百米级的深水环境中安全高效运行,清淤成本可控。研究成果可为大型水库清淤疏浚提供技术参考。
(
Reservoir sedimentation is a worldwide problem which affects the normal functioning of flood control,power generation,shipping,and water resources utilization. In particular,sediment deposition in front of dam may block the water intake of hydropower station and bottom outlet,severely affecting the power generation efficiency and flood discharge safety. The water depth in front of the dam of large reservoirs is generally over 100 meters. Efficient and safe dredging is an important approach to effectively control sediment deposition and maintain sustainable development of water resources. In this paper,the aerodynamic deep-water dredging technology is studied and applied to the Three Gorges Reservoir. Application result manifests that aerodynamic dredging technology can be operated safely and efficiently in 100-meter deep water environment. The research results can be taken as a technical reference for the dredging of large reservoirs.
|
| [16] |
黄仁勇, 王敏, 张细兵, 等. 三峡水库汛期“蓄清排浑” 动态运用方式初探[J]. 长江科学院院报, 2018, 35(7): 9-13.
为研究三峡水库汛期调度方式优化问题,以实测资料为基础,对三峡水库蓄水运用以来入出库沙量特性变化进行了分析,主要从泥沙角度对三峡水库采用汛期“蓄清排浑”动态运用方式进行了初步探讨。研究结果表明:三峡水库蓄水运用后汛期入库沙量大幅减小,上游溪洛渡和向家坝水库蓄水运用后三峡水库汛期6—9月份含沙量已经开始小于论证阶段5月份和10月份的含沙量;三峡水库主汛期出库沙量占年出库沙量的90%以上,且汛期出库沙量主要集中在1~2次大的出库沙峰过程中;近期三峡水库汛期采用“蓄清排浑”动态运用的泥沙调度方式,泥沙淤积可许。研究成果可为三峡水库汛期优化调度提供参考。
(
In an attempt to optimize the dispatching mode of the Three Gorges Reservoir (TGR) in flood season, we analyzed the variations of inbound and outbound sediment discharge after the impoundment of TGR based on measured data, and preliminarily investigated into the dynamic operation mode of “storing clear water and releasing muddy water” in flood season in terms of sediment. Since the impoundment of TGR, inbound sediment discharge has reduced by a large margin in flood season; in particular, since the operation of Xiluodu reservoir and Xiangjiaba reservoir, sediment concentration in TGR in flood season (June to September) has been smaller than those in May and October of demonstration stage. Meanwhile, accounting for over 90% of the annual value, sediment outflow in main flood season mainly concentrated in one or two large sand peaks. In the near future, the dynamic operation mode of “storing clear water and releasing muddy water” in flood season allows for sediment deposition.
|
| [17] |
潘庆燊. 关于三峡水库排沙调度的建议[J]. 长江科学院院报, 2015, 32(12): 1-7.
在回顾三峡水库长期使用问题已往研究成果和分析三峡水库初期蓄水运用以来库区泥沙淤积状况的基础上,提出了关于三峡水库排沙调度的建议。排沙调度是三峡水库运行调度的重要组成部分。排沙调度的目的是保证三峡水库大部分有效库容能长期使用;排沙调度的主要要求是在水库泥沙淤积达到初步平衡之前,仍应控制水库有效库容的年损失率小于1 000万m3/a,以及水库变动回水区上、中段无累积性泥沙淤积。汛期防洪限制水位的调整应符合上述要求。按三峡水库排沙调度方案,可以保持三峡水库大部分有效库容长期使用。
(
<p>On the basis of reviewing the previous research results for the permanent use of the Three Gorges reservoir,and analyzing the sedimentation situation since the operation of the Three Gorges reservoir,suggestions about operating mode of sediment discharging were proposed.Operating mode of sediment discharging is important for the operating mode of Three Gorges Reservoir.The purpose of operating mode of sediment discharging is to realize the permanent use of the main usable capacity of Three Gorges reservoir.Its preliminary requirements are to control the loss rate of reservoir usable storage less than 1 000×104 m3 per year before primary equilibrium of the reservoir deposition, and to resist the occurrence of the progressive deposition in the upper and middle reaches of fluctuating backwater region.The adjustment of flood control level in flood season should be in keeping with above requirements.According to the operating mode suggested,usable storage of the Three Gorges reservoir can be permanently used.</p>
|
| [18] |
汤德意, 沈杰. 生态清淤及淤泥处置技术在水库整治中的应用[J]. 水利水电科技进展, 2018, 38(3): 70-75.
(
|
| [19] |
冯利平, 陈小杰, 缪翚. 深圳市石岩水库环保清淤工程实施探讨[J]. 人民珠江, 2010, 31(1): 52-55.
(
|
| [20] |
沈佳隆. 浦江通济桥水库生态清淤工程实践[J]. 中国水利, 2020(20): 40-42.
(
|
| [21] |
王仲禹, 侯乐. 深水负压清淤研究和应用[J]. 水利规划与设计, 2018(10): 128-131.
(
|
| [22] |
陆宏圻, 杨勇, 何培杰, 等. 小浪底水库射流冲吸式清淤设备研究[J]. 人民黄河, 2011, 33(4): 15-16, 19, 150.
(
|
| [23] |
刘小强, 秦俊. 大型深水水库环保疏浚方案设计及工程应用[J]. 中国港湾建设, 2018, 38(12): 31-36.
(
|
| [24] |
吴晓伟. 锦屏二级水电站进水口基坑泥沙控制及水下清淤施工[J]. 四川水力发电, 2015, 34(增刊1): 63-65, 124.
(
|
| [25] |
崔鹏飞. 枕头坝一级水电站气动式清淤试验研究[J]. 人民长江, 2019, 50(增刊2): 220-222.
(
|
| [26] |
|
| [27] |
陈桂馥. 三峡水库变动回水区青岩子河段整治研究[D]. 重庆: 重庆交通大学, 2015.
(
|
| [28] |
董索, 李建清, 陈利强. 水库清淤技术概述[J]. 水利水电快报, 2019, 40(11): 49-52, 63.
(
|
| [29] |
戴卓, 李文杰, 杨胜发, 等. 三峡水库泥沙淤积对氮磷污染物的影响[J]. 人民长江, 2020, 51(2): 23-27.
(
|
| [30] |
王楠. 射流清淤船关键技术研究[D]. 上海: 上海交通大学, 2013.
(
|
| [31] |
张麟, 高云飞, 刘晓燕. 基于坝前淤积厚度的淤地坝拦沙量计算方法[J]. 人民黄河, 2023, 45(12):113-116,162.
(
|
| [32] |
杨成刚, 平妍容, 袁晶, 等. 三峡水库秋汛期水沙特点及秋汛洪水对库区冲淤的影响[J]. 泥沙研究, 2024, 49(1): 24-30.
(
|
| [33] |
黄庆超, 石巍方, 刘广龙, 等. 基于Delft3D的三峡水库不同工况下香溪河水动力水质模拟[J]. 水资源与水工程学报, 2017, 28(2): 33-39.
(
|
| [34] |
李哲, 郭劲松, 方芳, 等. 三峡水库澎溪河(小江)回水区一维水动力特征分析[J]. 重庆大学学报, 2012, 35(5): 143-150.
(
|
| [35] |
董谋. 长江上游涪陵至丰都江段鱼类栖息地分布及水力特征[D]. 重庆: 重庆交通大学, 2022.
(
|
| [36] |
郑瑶, 胡学斌, 何强, 等. 基于EFDC模型的重庆库区水环境容量研究[J]. 三峡生态环境监测, 2019, 4(2):9-16.
(
|
| [37] |
成金海, 向荣, 邱晓峰, 等. 三峡水库运行初期坝下近坝段河道冲刷对河床糙率影响分析[J]. 水利水电快报, 2012, 33(7): 59-63.
(
|
| [38] |
黄亚男. 向家坝、溪洛渡运行背景下三峡水库干支流水温水动力的变化研究[D]. 宜昌: 三峡大学, 2018.
(
|
| [39] |
JTS 105-1—2011, 港口建设项目环境影响评价规范[S]. 北京: 人民交通出版社, 2011.
(JTS 105-1—2011, Specifications for Environmental Impact Assessment of Port Engineering[S]. Beijing: China Communications Press, 2011.(in Chinese))
|
| [40] |
GB 3838—2002, 地表水环境质量标准[S]. 北京: 中国环境科学出版社, 2002.
(GB 3838—2002, Environmental Quality Standards for Surface Water[S]. Beijing: China Environmental Science Press, 2002.(in Chinese))
|
/
| 〈 |
|
〉 |