PDF(6964 KB)
Influence of Sand Content in Yili Loess on the Growth of Ecological Restoration Plants
YUAN Sheng-yang, YANG Gui-xia, LI Si-huan, CHU Jian-xun, YANG Xiao-ling, MA Jie, LIU Xian-feng
Journal of Changjiang River Scientific Research Institute ›› 2025, Vol. 42 ›› Issue (5) : 104-110.
PDF(6964 KB)
PDF(6964 KB)
Influence of Sand Content in Yili Loess on the Growth of Ecological Restoration Plants
To investigate the effect of sand content on the growth of slope ecological restoration plants, we used the Analytic Hierarchy Process to select suitable plant species and then conducted planting experiment with sand added in Yili loess slopes. By analyzing changes in plant coverage, cumulative soil evaporation, and maximum crack rate, we found that adding sand to the planting soil can speed up plant germination and improve the soil germination rate. During early growth stage with sufficient water supply, the germination rate and plant coverage are positively correlated with sand content. Nevertheless, under drought conditions, plant coverage decreases as sand content rises. The cumulative evaporation of soil moisture is positively correlated with sand content and varies significantly with temperature fluctuations. Higher temperatures lead to larger differences in cumulative evaporation among samples with different sand contents, but these differences gradually narrow as the temperature drops. Taking 40% sand content as the threshold for optimal conditions: when sand content is below 40%, it is positively correlated with the maximum crack rate, and an increase in the maximum crack rate corresponds to an increase in the peak plant coverage of each sample. However, when sand content exceeds 40%, sand content and the maximum crack rate display a negative correlation. As maximum crack rate increases, the peak plant coverage of sample decreases. For wild or poorly maintained ecological restoration sites, an optimal sand content of 20% is recommended. For artificially maintained ecological restoration sites, a 60% sand content is optimal. In flat, human-intervened ecological restoration and maintenance sites, full sand coverage is the best choice.
sand content / Ili loess / coverage / accumulated evaporation / maximum crack rate
| [1] |
国家林业和草原局. 中国荒漠化和沙化状况公报[EB/OL].(2015-12-29)[2024-01-01]. https://www.forestry.gov.cn/main/65/20151229/835177.html.
(State Forestry and Grassland Administration. Bulletin on Desertification and Desertification Status in China[EB/OL].(2015-12-29)[2024-01-01]. https://www.forestry.gov.cn/main/65/20151229/835177.html.) (in Chinese)
|
| [2] |
程积民, 万惠娥, 王静, 等. 半干旱区柠条生长与土壤水分消耗过程研究[J]. 林业科学, 2005, 41(2): 37-41.
(
|
| [3] |
任廷婕, 袁立敏, 高永, 等. 3种植物基固沙剂固土性能及其对植物生长影响的试验研究[J]. 水土保持学报, 2023, 37(5): 145-151.
(
|
| [4] |
苏银玲, 杨子祥. 白苞猩猩草种子萌发特性研究[J]. 植物保护, 2014, 40(1): 101-105.
(
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
王晶, 赵文武, 刘月, 等. 植物功能性状对土壤保持的影响研究述评[J]. 生态学报, 2019, 39(9):3355-3364.
(
|
| [9] |
|
| [10] |
戚赏, 刘磊, 杜丹, 等. 河南丹江口库区滑坡危害性评价及防治对策[J]. 矿产勘查, 2020, 11(3): 624-629.
(
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
宋桂龙, 韩烈保, 张训忠, 等. 土壤机械阻力对草地早熟禾根系生长的影响[J]. 北京林业大学学报, 2009, 31(1): 60-65.
(
|
| [16] |
张大勇, 王冬, 崔凯. 不同土质对草本植物生长状态的影响[J]. 东北林业大学学报, 2012, 40(8): 138-141.
(
|
| [17] |
王贵荣, 王凯, 袁林, 等. 紫花苜蓿根系-砂土复合体力学特性[J]. 西安科技大学学报, 2023, 43(1):99-108.
(
|
| [18] |
张彬, 张晓雷, 田广宇. 含砂量对黏-砂混合土力学特性影响的试验研究及工程应用[J]. 水运工程, 2022(6):195-201.
(
|
| [19] |
周利颖, 李瑞平, 苗庆丰, 等. 河套灌区不同掺沙量对重度盐碱土壤水盐运移的影响[J]. 农业工程学报, 2020, 36(10): 116-123.
(
|
| [20] |
新疆植物志编辑委员会. 新疆植物志:第一、四、五、六卷[M]. 乌鲁木齐: 新疆科技卫生出版社,1992-2004.
(Editorial Committee of Xinjiang Flora. Xinjiang Flora: Volumes 1,4,5, and 6[M]. Urumqi: Xinjiang Science and Health Publishing House,1992-2004.) (in Chinese)
|
| [21] |
米吉提·胡达拜尔地, 徐建国. 新疆高等植物检索表[M]. 乌鲁木齐: 新疆大学出版社, 2000.
(
|
| [22] |
张秀文, 张嘉伦, 王小军, 等. 天水市渭河流域护坡植物选择与配置[J]. 中国林副特产, 2022(3): 66-68.
(
|
| [23] |
陈飞, 钱乾, 高超, 等. 赣南红壤边坡护坡草本植物环境适应性研究[J]. 人民长江, 2021, 52(10): 70-75.
(
|
| [24] |
吕媛媛. 常见护坡草本植物对边坡稳定性的影响[J]. 地基处理, 2021, 3(3):181-187.
(
|
| [25] |
杨秀丽. 人工边坡的植被护坡技术和景观设计方法[D]. 重庆: 重庆大学, 2005.
(
|
| [26] |
徐妙芳. 无土节水环保型草坪板的研究[D]. 杭州: 浙江理工大学, 2009.
(
|
| [27] |
金福, 陈元凯, 周文冠, 等. 禾本科-豆科作物复合种植模式下化学除草的研究现状及展望[J]. 分子植物育种, 2019, 17(17): 5880-5890.
(
|
| [28] |
牛丽思, 张爱军, 赵佳敏, 等. 易溶盐含量对伊犁原状黄土力学特性的影响规律[J]. 岩土工程学报, 2020, 42(9): 1705-1714.
(
|
| [29] |
|
| [30] |
圣倩倩, 何文妍, 刘宇阳, 等. 植物生理信息监测技术的研究进展[J]. 西部林业科学, 2020, 49(6): 8-15.
(
|
| [31] |
|
| [32] |
张兴义, 隋跃宇. 土壤压实对农作物影响概述[J]. 农业机械学报, 2005, 36(10): 161-164.
(
|
| [33] |
慕焕东, 邓亚虹, 张文栋. 沙漠-黄土高原过渡区砂质黄土强度试验研究[J]. 西北农林科技大学学报(自然科学版), 2020, 48(8): 146-154.
(
|
| [34] |
薛立, 傅静丹. 影响植物竞争的因子[J]. 中南林业科技大学学报, 2012, 32(2): 6-15.
(
|
| [35] |
|
| [36] |
|
| [37] |
Light penetration through a Drummer silty clay loam and a Broomfield sand was measured spectrophotometrically and biologically. The spectrophotometric measurements showed that less than 1% of the incident light penetrated 2.2 millimeters at any wavelength between 350 and 780 nanometers for ped sizes up to 1 millimeter. Biological measurements with light-sensitive lettuce (Lactuca sativa) seeds in soil showed that an exposure to light equivalent to about 1 sunny day induced some germination of seeds which were 2 millimeters below the surface, but did not affect seeds 6 millimeters below the surface.
|
| [38] |
马晓凡, 张晨阳, 刘瑾, 等. 含砂量对黄原胶复合黏性土抗裂和抗冲刷性能的影响[J]. 水利水电科技进展, 2023, 43(4):59-66,78.
(
|
/
| 〈 |
|
〉 |