Experimental Study on Soil Hardening Model Parameters of First-stage Terrace of Yangtze River in Wuhan

LI Guang-cheng, SHAO Yong, Yi Pan-pan, WANG Lu, CHEN Ming, MA Lu-han

Journal of Changjiang River Scientific Research Institute ›› 2025, Vol. 42 ›› Issue (5) : 165-173.

PDF(10453 KB)
PDF(10453 KB)
Journal of Changjiang River Scientific Research Institute ›› 2025, Vol. 42 ›› Issue (5) : 165-173. DOI: 10.11988/ckyyb.20240144
Rock Soil Engineering

Experimental Study on Soil Hardening Model Parameters of First-stage Terrace of Yangtze River in Wuhan

Author information +
History +

Abstract

A series of physical property tests, consolidation tests, and unloading-reloading tests were conducted on undisturbed soil samples of silty clay, silt, and fine sand from the first-stage terrace of Yangtze River in Wuhan. The indoor experimental values of modified Mohr-Coulomb model parameters, including E o e d r e f, E 50 r e f, E u r r e f,c',φ',and Rf for typical soil layers with upper clay layer and lower sand layer in this terrace, were directly acquired. Using experimental data, adjusted experimental data, and empirical data from other regions in China, the relationships among different modulus parameters of typical soil layers in this region were analyzed. Moreover, the effective strength indexes were compared with the current provincial standard specification. The parameters obtained from this experimental study can be comprehensively selected and applied in areas with similar engineering geological background conditions. Additionally, they can offer valuable references for geotechnical engineering finite element parameter inversion analysis, parameter sensitivity analysis, and parameter applicability correction, which are based on the finite - element modeling experience of actual foundation pit engineering and the monitoring data of foundation pit engineering examples.

Key words

foundation pit engineering / hardening model parameters / numerical simulation / modified Mohr-Coulomb / first-stage terrace of Yangtze River

Cite this article

Download Citations
LI Guang-cheng , SHAO Yong , Yi Pan-pan , et al . Experimental Study on Soil Hardening Model Parameters of First-stage Terrace of Yangtze River in Wuhan[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(5): 165-173 https://doi.org/10.11988/ckyyb.20240144

References

[1]
王卫东, 王浩然, 徐中华. 基坑开挖数值分析中土体硬化模型参数的试验研究[J]. 岩土力学, 2012, 33(8): 2283-2290.
(WANG Wei-dong, WANG Hao-ran, XU Zhong-hua. Experimental Study of Parameters of Hardening Soil Model for Numerical Analysis of Excavations of Foundation Pits[J]. Rock and Soil Mechanics, 2012, 33(8): 2283-2290.) (in Chinese)
[2]
王卫东, 王浩然, 徐中华. 上海地区基坑开挖数值分析中土体HS-Small模型参数的研究[J]. 岩土力学, 2013, 34(6): 1766-1774.
(WANG Wei-dong, WANG Hao-ran, XU Zhong-hua. Study of Parameters of HS-small Model Used in Numerical Analysis of Excavations in Shanghai Area[J]. Rock and Soil Mechanics, 2013, 34(6): 1766-1774.) (in Chinese)
[3]
梁发云, 贾亚杰, 丁钰津, 等. 上海地区软土HSS模型参数的试验研究[J]. 岩土工程学报, 2017, 39(2):269-278.
(LIANG Fa-yun, JIA Ya-jie, DING Yu-jin, et al. Experimental Study on Parameters of HSS Model for Soft Soils in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 269-278.) (in Chinese)
[4]
刘畅. 考虑土体不同强度与变形参数及基坑支护空间影响的基坑支护变形与内力研究[D]. 天津: 天津大学, 2008.
(LIU Chang. Analysis of Deformation and Stress Due to Deep Excavation Considering Different Deformation and Strength Parameters of Soil and Space Effect of Excavation and Retaining Structure[D]. Tianjin: Tianjin University, 2008.) (in Chinese)
[5]
周恩平. 考虑小应变的硬化土本构模型在基坑变形分析中的应用[D]. 哈尔滨: 哈尔滨工业大学, 2010.
(ZHOU En-ping. Application of Hardening Soil Model with Small-strain in Deformation Analysis for Foundation PIT[D]. Harbin: Harbin Institute of Technology, 2010.) (in Chinese)
[6]
刘钊, 李子春, 刘国楠, 等. 花岗岩残积土的修正摩尔库伦模型参数取值研究[J]. 铁道建筑, 2017, 57(3):89-92.
(LIU Zhao, LI Zi-chun, LIU Guo-nan, et al. Study on Parameters Determination of Modified Mohr-Coulomb Model for Granite Residual Soil in Deep Foundation Pit Simulation Analysis[J]. Railway Engineering, 2017, 57(3): 89-92.) (in Chinese)
[7]
司马军, 马旭, 潘健. 武汉老黏性土小应变硬化模型参数的试验研究[J]. 水利与建筑工程学报, 2018, 16(3): 93-97, 112.
(SIMA Jun, MA Xu, PAN Jian. Experimental Study on Parameters of HS-small Model for Natural Aged Clay in Wuhan[J]. Journal of Water Resources and Architectural Engineering, 2018, 16(3): 93-97, 112.) (in Chinese)
[8]
李光诚, 邵勇, 帅红岩, 等. 武汉地区深基坑支护工程有限元分析模型概化及参数选取[J]. 资源环境与工程, 2021, 35(6): 875-881.
Abstract
从支护结构的概化、模型特性参数的选取和是否考虑基坑降水等3个基坑支护工程建模较为重要的方面进行研究探讨,针对武汉地区两个工程实例建立包括初始模型在内的6个midas GTS NX有限元分析模型,分别提取6个模型分析结果中的水平和竖向位移值,并与基坑监测报告和地铁运营监测报告中的监测数据进行拟合和比较,结果表明支撑体系的简化模拟是可行和合理的,并不会造成岩土体、支护结构或者地铁隧道水平及竖向位移值的显著变化。对于在GTS NX的基坑分析中最常涉及到的土体刚度模量,通过两个工程实例的分析得出,武汉地区Q<sup>al</sup><sub>4</sub>的粉质黏土和砂土,E<sup>ref</sup><sub>ur</sub>取值为7倍左右的E<sup>ref</sup><sub> 50</sub>更合理。降水因素对模型竖向沉降的影响较大,对水平向的位移和坑底隆起也会产生一定影响,对于武汉地区存在承压水降压的基坑,必须在模型中体现渗流分析的过程,方能得出较为准确的模拟计算结果。
(LI Guang-cheng, SHAO Yong, SHUAI Hong-yan, et al. Model Generalization and Parameter Selection of Finite Element Analysis of Deep Foundation Supporting Engineering in Wuhan[J]. Resources Environment & Engineering, 2021, 35(6): 875-881.) (in Chinese)
[9]
徐伟, 刘超, 胡科, 等. 武汉软土小应变硬化模型参数试验研究[J]. 安全与环境工程, 2024, 31(2):88-99.
(XU Wei, LIU Chao, Hu Ke, et al. Experimental Study on Parameters of Hardening Soil Small-strain Model for Soft Soil in Wuhan[J]. Safety and Environmental Engineering, 2024, 31(2):88-99) (in Chinese)
[10]
王璐, 邵勇, 李光诚, 等. 武汉地区土体硬化模型试验参数的应用分析[J]. 资源环境与工程, 2024, 38(5):637-645.
Abstract
试验研究得出武汉地区的切线模量E<sup>ref</sup><sub>oed</sub>、割线模量E<sup>ref</sup><sub>50</sub>、卸载再加载模量E<sup>ref</sup><sub>ur</sub>、黏聚力c′、内摩擦角φ′、失效率(破坏比)R<sub>f</sub>等土体硬化模型参数,将其代入基于一典型基坑支护工程案例所建立的精细化修正摩尔—库伦(MMC)有限元模型,把模拟计算结果与监测结果进行系统的对比分析,综合考虑模拟计算极值、监测极值、监测点布置位置和模拟节点位置的双重对应关系,初步探究将试验参数直接应用于实际工程建模分析的合理性和适用性。总体来看,模拟计算结果符合一般规律,与现场监测结果趋势在一定程度上吻合。从数值上看,全局模拟计算极值大于现场整体监测极值,周边道路沉降、周边建筑物沉降、围护结构顶部水平位移、围护结构深层水平位移的模拟计算极值分别为监测极值的1.06、1.84、1.84、1.73倍。从位置上看,得出以上4项监测项目的模拟计算极值与监测极值的位置均存在不同程度的对应差异,因此又分别对“模拟计算极值/模拟计算极值同位置处监测值”、“监测极值/监测极值同位置处模拟计算值”进行反向双重对比,以上4项监测项目倍数关系依次为1.07/2.52/2.14/2.1、1.06/1.09/2.12/1.18。另外,围护结构深层水平位移模拟计算值随深度的变化曲线与监测结果也存在一定差异。武汉地区土体硬化模型试验参数需要结合更多工程实例进行应用检验,在充分检验的基础上进行下一步的反演校核分析,并最终科学地给出指导性取值参数。
(WANG Lu, SHAO Yong, LI Guang-cheng, et al. Application of Soil Hardening Model Test Parameters in Wuhan Area[J]. Resources Environment & Engineering, 2024, 38(5):637-645.) (in Chinese)
[11]
马路寒. GTS NX在深基坑工程中的应用:从入门到精通[M]. 北京: 北京迈达斯技术有限公司, 2018.
(MA Lu-han. Application of GTS NX in Deep Excavation Engineering: From Beginner to Proficient[M]. Beijing: MIDAS Information Technology Co., Ltd, 2018.) (in Chinese)
[12]
戚辉, 龙治国, 朱锐, 等. 武汉城市地质调查工程地质调查与勘探专项报告书[R]. 武汉: 武汉市测绘研究院, 2015.
(QI Hui, LONG Zhi-guo, ZHU Rui, et al. Wuhan Urban Geological Survey Special Report on Engineering Geological Survey and Exploration[R]. Wuhan: Wuhan Geomatics Institute, 2015.) (in Chinese)
[13]
李光诚, 邵勇, 伊盼盼, 等. 武汉长江I级阶地原状土样获取技术研究[J]. 钻探工程, 2024, 51(4):163-171.
(LI Guang-cheng, SHAO Yong, YI Pan-Pan, et al. Practice of Obtaining Undisturbed Soil Samples from Wuhan First Stage Terrace of the Yangtze River[J]. Exploration Engineering, 2024, 51(4):163-171.) (in Chinese)
[14]
舒福华, 辛颖. 新建居住项目(红桥村城中村改造K16地块)岩土工程勘察报告[R]. 武汉: 中机三勘岩土工程有限公司, 2021.
SHU Fu-hua, XIN Ying. New Residential Project (K16 Block for Urban Village Renovation in Hongqiao Village) Geotechnical Engineering Survey Report[R]. Wuhan: China Machinery TIDI Geotechnical Engineering Co., Ltd, 2021.) (in Chinese)
[15]
王德元. 红桥村城中村改造K16地块勘察工程现场编录表[R]. 武汉: 湖北地矿建设勘察有限公司, 2023.
(WANG De-yuan. On-site Cataloging Table for K16 Plot of Urban Village Renovation Project in Hongqiao Village[R]. Wuhan: Hubei Geological Build Prospecting & Engineering Co., Ltd, 2023.) (in Chinese)
[16]
DB42/T 159—2012, 基坑工程技术规程[S]. 北京: 中国标准出版社, 2012.
(DB42/T 159—2012, Foundation Pit Engineering Technical Regulations[S]. Beijing: Standards Press of China, 2012.) (in Chinese)
PDF(10453 KB)

Accesses

Citation

Detail

Sections
Recommended

/