Pollution of Nitrogen and Phosphorus in Lake Sediments of Middle and Lower Yangtze River: Status and Remediation Strategies

XIAO De-qiang, DONG Lei, PAN Xiong

Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (12) : 48-56.

PDF(8839 KB)
PDF(8839 KB)
Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (12) : 48-56. DOI: 10.11988/ckyyb.20230891
Water Environment and Water Ecology

Pollution of Nitrogen and Phosphorus in Lake Sediments of Middle and Lower Yangtze River: Status and Remediation Strategies

Author information +
History +

Abstract

As one of the regions with the most concentrated distribution of freshwater lakes in China, the middle and lower reaches of the Yangtze River has seen significant improvements in water ecological environment in the past decade. However, the trend of lake eutrophication has not been fundamentally contained; the water environment quality and eutrophication of some lakes continue to deteriorate. Current analyses of lake pollution are limited by inadequate samples, making it challenging to discern regional characteristics among lake groups. In this paper, the characteristics of nitrogen and phosphorus pollution in surface sediments of 23 major lakes in middle and lower Yangtze River were analyzed. Results reveal that the average total nitrogen (TN) concentration in river-connected lakes and half-connected lakes are the highest, with no significant differences observed, followed by suburban lakes and urban lakes in descending order. Conversely, the mean total phosphorus (TP) concentration features notable differences, with urban lakes ranking the highest, followed by suburban lakes, river-connected lakes, and half-connected lakes in descending order. Although improvements have been made in the eutrophication status of regional urban and suburban lakes, the comprehensive pollution degree classification suggests that most lakes in the area still face severe pollution challenges. Therefore, there is still an urgent need to strengthen efforts in controlling nitrogen and phosphorus eutrophication. The results provide an overall understanding of the eutrophication of lakes in the middle and lower reaches of the Yangtze River, and support the prevention and control of eutrophication of lakes in the Yangtze River basin.

Key words

lake group / eutrophication / sediment / pollution control of nitrogen and phosphorus / middle and lower Yangtze River

Cite this article

Download Citations
XIAO De-qiang , DONG Lei , PAN Xiong. Pollution of Nitrogen and Phosphorus in Lake Sediments of Middle and Lower Yangtze River: Status and Remediation Strategies[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(12): 48-56 https://doi.org/10.11988/ckyyb.20230891

References

[1]
XU X, YANG G, TAN Y, et al. Ecosystem Services Trade-offs and Determinants in China’s Yangtze River Economic Belt from 2000 to 2015[J]. The Science of the Total Environment, 2018, 634: 1601-1614.
[2]
ZHOU L J, LI J, ZHANG Y, et al. Trends in the Occurrence and Risk Assessment of Antibiotics in Shallow Lakes in the Lower-middle Reaches of the Yangtze River Basin, China[J]. Ecotoxicology and Environmental Safety, 2019, 183: 109511.
[3]
王苏民, 窦鸿身. 中国湖泊志[M]. 北京: 科学出版社, 1998.
(WANG Su-min, DOU Hong-shen. Chronicles of Chinese Lakes[M]. Beijing: Science Press, 1998.) (in Chinese)
[4]
秦伯强. 长江中下游浅水湖泊富营养化发生机制与控制途径初探[J]. 湖泊科学, 2002, 14(3):193-202.
(QIN Bo-qiang. Preliminary Study on the Occurrence Mechanism and Control Pathway of Eutrophication in Shallow Lakes in the Middle and Lower Reaches of the Yangtze River[J]. Journal of Lake Sciences, 2002, 14(3):193-202.) (in Chinese)
[5]
赵晏慧, 李韬, 黄波, 等. 2016—2020年长江中游典型湖泊水质和富营养化演变特征及其驱动因素[J]. 湖泊科学, 2022, 34(5): 1441-1451.
(ZHAO Yan-hui, LI Tao, HUANG Bo, et al. Evolution Characteristics and Driving Factors of Water Quality and Eutrophication of Typical Lakes in the Middle Reaches of the Yangtze River from 2016 to 2020[J]. Journal of Lake Sciences, 2022, 34(5): 1441-1451.) (in Chinese)
[6]
陈韬, 许友泽, 赵媛媛, 等. 洞庭湖区内湖水环境现状及变化特征[J]. 广东化工, 2023, 50(3):166-169.
(CHEN Tao, XU You-ze, ZHAO Yuan-yuan, et al. Current Status and Variations of Lake Water Environment in Dongting Lake Area[J]. Guangdong Chemical Industry, 2023, 50(3):166-169.) (in Chinese)
[7]
朱丹丹, 胡琦, 陈兆祺, 等. 洞庭湖水质演变特征及驱动因子识别研究[J]. 人民长江, 2023, 54(2): 106-111.
(ZHU Dan-dan, HU Qi, CHEN Zhao-qi, et al. Research on the Evolution Characteristics and Driving Factors of Water Quality in Dongting Lake[J]. Yangtze River, 2023, 54(2): 106-111.) (in Chinese)
[8]
CONLEY D J, PAERL H W, HOWARTH R W, et al. Ecology. Controlling Eutrophication: Nitrogen and Phosphorus[J]. Science, 2009, 323(5917): 1014-1015.
[9]
张运林, 秦伯强, 朱广伟, 等. 论湖泊重要性及我国湖泊面临的主要生态环境问题[J]. 科学通报, 2022, 67(30): 3503-3519.
(ZHANG Yun-lin, QIN Bo-qiang, ZHU Guang-wei, et al. On the Importance of Lakes and the Main Ecological and Environmental Problems Faced by Lakes in China[J]. Chinese Science Bulletin, 2022, 67(30): 3503-3519.) (in Chinese)
[10]
姚仕明, 章运超, 柴朝晖, 等. 长江下游河湖保护与修复状况及对策建议[J]. 长江技术经济, 2022, 6(6):1-10.
(YAO Shi-ming, ZHANG Yun-chao, CHAI Zhao-hui, et al. Yangtze River Technology and Economics, 2022, 6(6):1-10.) (in Chinese)
[11]
王金南, 孙宏亮, 续衍雪, 等. 关于“十四五”长江流域水生态环境保护的思考[J]. 环境科学研究, 2020, 33(5): 1075-1080.
(WANG Jin-nan, SUN Hong-liang, XU Yan-xue, et al. Reflections on the Protection of Water Environment in the Yangtze River Basin During the 14th Five-Year Plan[J]. Research of Environmental Sciences, 2020, 33(5): 1075-1080.() (in Chinese)
[12]
王圣瑞. 湖泊沉积物-水界面过程: 氮磷生物地球化学[M]. 北京: 科学出版社, 2013.
(WANG Sheng-rui. Sediment-Water Interface Process of Lakes[M]. Beijing: Science Press, 2013.) (in Chinese)
[13]
黄威, 刘星, 赵丽, 等. 岱海沉积物内源磷释放特征的研究[J]. 环境科学研究, 2020, 33(9): 2094-2102.
(HUANG Wei, LIU Xing, ZHAO Li, et al. Release Characteristics of Phosphorus in Sediment from Daihai Lake[J]. Research of Environmental Sciences, 2020, 33(9): 2094-2102.) (in Chinese)
[14]
王斌, 黄廷林, 陈凡. 亚热带水库水质特征及沉积物内源污染研究[J]. 中国环境科学, 2021, 41(10):4829-4836.
(WANG Bin, HUANG Ting-lin, CHEN Fan, et al. Research on Water Quality Characteristics and Endogenous Pollution of Sediments in Subtropical Reservoirs[J]. China Environmental Science, 2021, 41(10):4829-4836.) (in Chinese)
[15]
刘昔, 邓兆林, 张露, 等. 洪湖沉积物内源污染及其氮磷释放特征[J]. 环境科学研究, 2022, 35(1): 80-88.
(LIU Xi, DENG Zhao-lin, ZHANG Lu, et al. Sediment Endogenous Pollution and Release Characteristics of Honghu Lake[J]. Research of Environmental Sciences, 2022, 35(1): 80-88.) (in Chinese)
[16]
SMOLDERS A J P, LAMERS L P M, LUCASSEN E C H E T, et al. Internal Eutrophication: How it Works and What To Do About It—A Review[J]. Chemistry and Ecology, 2006, 22(2): 93-111.
[17]
YANG Y, GAO B, HAO H, et al. Nitrogen and Phosphorus in Sediments in China: a National-scale Assessment and Review[J]. Science of the Total Environment, 2017, 576: 840-849.
[18]
陶玉强, 赵睿涵. 持久性有机污染物在中国湖库水体中的污染现状及分布特征[J]. 湖泊科学, 2020, 32(2): 309-324.
(TAO Yu-qiang, ZHAO Rui-han. Occurrence and Distribution of Persistent Organic Pollutants in Water of Chinese Lakes and Reservoirs[J]. Journal of Lake Sciences, 2020, 32(2): 309-324.) (in Chinese)
[19]
夏炎雷, 周丽君, 吴佳妮, 等. 长江中下游地区湖泊沉积物杀生剂污染特征及生态风险[J]. 湖泊科学, 2023, 35(1): 203-215.
(XIA Yan-lei, ZHOU Li-jun, WU Jia-ni, et al. Characteristics and Ecological Risk of Lake Sediment Biocide Pollution in the Middle and Lower Reaches of the Yangtze River[J]. Journal of Lake Sciences, 2023, 35(1): 203-215.) (in Chinese)
[20]
马荣华. 中国湖泊分布地图集[M]. 北京: 科学出版社, 2015.
(MA Rong-hua. Atlas of Lakes in China[M]. Beijing: Science Press, 2015.) (in Chinese)
[21]
万宏滨, 周娟, 罗端, 等. 长江中游湖泊表层沉积物多环芳烃的分布、来源特征及其生态风险评价[J]. 湖泊科学, 2020, 32(6):1632-1645.
(WAN Hong-bin, ZHOU Juan, LUO Duan, et al. Distribution, Source Characteristics and Ecological Risk Assessment of Polycyclic Aromatic Hydrocarbons in Surface Sediments of Lakes along the Middle Reaches of the Yangtze River[J]. Journal of Lake Sciences, 2020, 32(6):1632-1645.) (in Chinese)
[22]
陶志英, 余智杰, 陈文静, 等. 军山湖浮游植物群落结构及其与环境因子的关系[J]. 江苏农业科学, 2018, 46(14): 274-279.
(TAO Zhi-ying, YU Zhi-jie, CHEN Wen-jing, et al. Phytoplankton Community Structure in Junshan Lake and Its Relationship with Environmental Factors[J]. Jiangsu Agricultural Sciences, 2018, 46(14): 274-279.) (in Chinese)
[23]
LI Y, GONG X, ZHAO Z, et al. Distribution and Release of Volatile Organic Sulfur Compounds in Yangcheng Lake[J]. Water, 2022, 14(8): 1199.
[24]
吴文晖, 樊娟, 邹辉, 等. 大通湖主要污染物浓度空间分布及其污染来源解析[J]. 环境监控与预警, 2018, 10(6): 48-52, 59.
(WU Wen-hui, FAN Juan, ZOU Hui, et al. Spatial Distribution of Main Pollutants in Datong Lake and Analysis of Pollution Sources[J]. Environmental Monitoring and Forewarning, 2018, 10(6): 48-52, 59.) (in Chinese)
[25]
马金玉, 罗千里, 王文才, 等. 华阳河湖群表层沉积物磷形态及生物有效性[J]. 长江流域资源与环境, 2021, 30(12):2962-2971.
(MA Jin-yu, LUO Qian-li, WANG Wen-cai, et al. Phosphorus Morphology and Bioavailability of Surface Sediments in Huayang River and Lake Groups[J]. Resources and Environment in the Yangtze River Basin, 2021, 30(12): 2962-2971.) (in Chinese)
[26]
林子阳, 姜应和, 程润喜, 等. 汤逊湖·南湖及墨水湖底泥沉积物中氮磷的释放特征[J]. 安徽农业科学, 2023, 51(2): 64-67.
(LIN Zi-yang, JIANG Ying-he, CHENG Run-xi, et al. Release Characteristics of Nitrogen and Phosphorus in the Sediments of Tangxun Lake, South Lake and Moshui Lake[J]. Journal of Anhui Agricultural Sciences, 2023, 51(2): 64-67.) (in Chinese)
[27]
杨云梦. 月湖沉积物—水界面营养盐的时空分布特征研究[D]. 武汉: 华中师范大学, 2018.
(YANG Yun-meng. Temporal and Spatial Distribution Characteristics of Nutrients at the Sediment-water Interface in Yuehu Lake[D]. Wuhan: Central China Normal University, 2018.) (in Chinese)
[28]
阮柏野, 熊飞, 刘红艳, 等. 汉阳湖群表层沉积物磷含量分布特征[J]. 水生态学杂志, 2012, 33(5): 1-6.
(RUAN Bai-ye, XIONG Fei, LIU Hong-yan, et al. Phosphorous Distribution of the Surface Sediments of Lakes in Hanyang District[J]. Journal of Hydroecology, 2012, 33(5): 1-6.) (in Chinese)
[29]
何军, 李福林, 陶良, 等. 典型内陆湖泊沉积物氮,磷和重金属分布特征及生态风险评价:以武汉市武湖为例[J]. 中国地质调查, 2022(2):110-118.
(HE Jun, LI Fu-lin, TAO Liang, et al. Distribution Characteristics and Ecological Risk Assessment of Nitrogen, Phosphorus and Heavy Metals in Sediments of Typical Inland Lakes: A Case Study of Wuhu Lake in Wuhan City[J]. China Geological Survey, 2022(2):110-118.) (in Chinese)
[30]
王芳, 夏伟, 孙奥, 等. 湖北长湖表层沉积物营养盐和重金属分布特征及污染评价[J]. 资源环境与工程, 2023, 37(5): 545-553.
Abstract
2019年9月采集了长湖马洪台区、后港区、毛李区、湖心区和出湖口区共25个表层沉积物样品,分析表层沉积物营养盐和重金属的空间分布和污染特征,并对重金属来源进行初步分析。结果表明,长湖表层沉积物中Corg和TN空间分布特征相似,含量高值区基本位于马洪台区,其次为毛李区,含量低值区基本位于后港区、湖心区和出湖口区;TP含量表现为后港区和湖心区最高,马洪台区次之,毛李区和出湖口区最低。重金属As、Pb、Cr、Cu、Ni在空间分布上具有一致性,含量高值区主要集中在后港区和湖心区,毛李区次之,马洪台区和出湖口区含量最低;Cd和Hg在马洪台区含量最高,略高于土壤背景值;Zn含量在各区域变化不明显,整体上低于或接近于土壤背景值。营养盐污染评价中,后港区、湖心区和马洪台区整体上处于重度污染,毛李区处于中度污染,出湖口区处于轻度污染,其中P是造成长湖水体富营养化的主要因素。重金属潜在生态风险评价中,后港区和湖心区污染较为严重,处于中等生态风险水平,其中As是主要的生态风险贡献因子,在后港区和湖心区处于较重生态风险水平;Cd与Hg在马洪台区处于中等生态风险水平;其余重金属均处于低生态风险水平。分析结果表明,重金属As、Cr、Cu、Ni和Pb之间相关性显著,具有相似的来源,可能主要来源于后港镇工农业废水;Cd和Hg主要来源于船只燃油排放;Zn主要受自然源的影响。该研究成果可为长湖污染控制和生态修复提供科学依据。
(WANG Fang, XIA Wei, SUN Ao, et al. Distribution Characteristics and Pollution Assessment of Nutrients and Heavy Metals in Surface Sediments of Changhu Lake in Hubei Province[J]. Resources Environment & Engineering, 2023, 37(5): 545-553.) (in Chinese)
[31]
LEIVUORI M, NIEMISTÖ L. Sedimentation of Trace Metals in the Gulf of Bothnia[J]. Chemosphere, 1995, 31(8): 3839-3856.
[32]
PAN X, LIN L, HUANG Z, et al. Distribution Characteristics and Pollution Risk Evaluation of the Nitrogen and Phosphorus Species in the Sediments of Lake Erhai, Southwest China[J]. Environmental Science and Pollution Research, 2019, 26(22): 22295-22304.
[33]
吴世凯, 谢平, 倪乐意, 等. 长江中下游地区湖泊中蓝藻及其与氮磷浓度的关系[J]. 水生态学杂志, 2014, 35(3):19-25.
(WU Shi-kai, XIE Ping, NI Le-yi, et al. Cyanobacteria Genus and Its Relationship with Nitrogen and Phosphorus Concentration in Lakes along the Middle and Lower Reaches of the Yangtze River[J]. Journal of Hydroecology, 2014, 35(3):19-25.) (in Chinese)
[34]
朱广伟, 许海, 朱梦圆, 等. 三十年来长江中下游湖泊富营养化状况变迁及其影响因素[J]. 湖泊科学, 2019, 31(6):1510-1524.
(ZHU Guang-wei, XU Hai, ZHU Meng-yuan, et al. Changes in Eutrophication Status and Influencing Factors of Lakes in the Middle and Lower Reaches of the Yangtze River in the past 30 years[J]. Journal of Lake Sciences, 2019, 31(6):1510-1524.) (in Chinese)
[35]
刘伟, 褚一凡, 谭启洋, 等. 鄱阳湖西侧周边农村水塘夏季表层沉积物氮、磷、有机质分布特征及评价[J]. 湖泊科学, 2023, 35(1):192-202.
(LIU Wei, CHU Yi-fan, TAN Qi-yang, et al. Distribution Characteristics and Evaluation of Nitrogen, Phosphorus and Organic Matter in Summer Surface Sediments of Rural Ponds around the West Side of Poyang Lake[J]. Journal of Lake Sciences, 2023, 35(1):192-202.) (in Chinese)
[36]
QIN B, ZHU G. The Nutrient Forms,Cycling and Exchange Flux in the Sediment and Overlying Water System in Lakes from the Middle and Lower Reaches of Yangtze River[J]. Science in China Series D, 2006, 49(1):1-13.
[37]
毛亮, 罗丛强, 石彭灵, 等. 湖泊水、沉积物氮磷的空间分析及其耦合特征研究: 以大通湖为例[J]. 海洋与湖沼, 2017, 48(5): 952-959.
(MAO Liang, LUO Cong-qiang, SHI Peng-ling, et al. Spatial Analysis and Coupling Characteristics of Nitrogen and Phosphorus in Water and Sediment—A Case Study in Datong Lake[J]. Oceanologia et Limnologia Sinica, 2017, 48(5): 952-959.) (in Chinese)
[38]
周汉娥, 陈晓飞, 何鑫, 等. 洪湖营养盐时空分布特征及成因分析[J]. 地球与环境, 2021, 49(1): 9-17.
(ZHOU Ha-ne, CHEN Xiao-fei, HE Xin, et al. Research on Spatio-temporal Variation and Causes of Nutrients in Honghu Lake[J]. Earth and Environment, 2021, 49(1): 9-17.) (in Chinese)
[39]
陈晓飞, 秦双, 何乾坤, 等. 龙感湖沉积物营养盐及有机质分布特征与评价[J]. 环境科学与技术, 2022, 45(3):81-86.
(CHEN Xiao-fei, QIN Shuang, HE Qian-kun, et al. Distribution Characteristics and Evaluation of Nutrients and Organic Matter in Sediments of Longgan Lake[J]. Environmental Science and Technology 3, 2022, 45(3):81-86.) (in Chinese)
[40]
潘雄, 顾文俊, 李欢, 等. 洪湖沉积物碳氮磷分布特征及污染评价[J]. 长江科学院院报, 2021, 38(8):41-46.
Abstract
洪湖是中国第七大淡水湖,富营养化问题日益突出。全面了解洪湖沉积物氮、磷、有机质的含量及分布特征,对掌握其富营养化现状与氮磷污染生态风险具有重要意义。在湖区布设了8个采样点,2019年10月采集50 cm柱状沉积物,分别测定不同深度沉积物总氮(TN)、总磷(TP)以及有机质(OM)含量,分析了TN、TP 和OM 含量的空间分布特征及相关性,并运用综合污染指数法评价其对应的污染程度。结果表明:洪湖沉积物TN含量在467.8~8 454.5 mg/kg之间,平均值2 167 mg/kg,为重度污染,其中近一半的采样点表层沉积物TN含量>5 000 mg/kg;TP含量在502.7~1 252.4 mg/kg之间,平均值693.8 mg/kg,除杨柴湖为重度污染外,其他大部分地区为中度污染;有机质含量占比在5.0%~24.9%之间,平均值9.6%,为重度污染。在垂直空间上,TN、TP 和OM 均在沉积物表层垂向深度0~20 cm存在明显的积累,其含量随垂向深度的增加而迅速降低。研究成果可为洪湖富营养化的控制与治理提供科学数据支撑。
(PAN Xiong, GU Wen-jun, LI Huan, et al. Carbon, Nitrogen, and Phosphorus in Sediments of Honghu Lake: Spatial Distribution and Pollution Evaluation[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(8): 41-46.) (in Chinese)
Honghu Lake, the seventh largest freshwater lake in China, has been undergoing serious eutrophication in recent years. Investigating into the content and distribution characteristics of nitrogen, phosphorus and organic matters in the sediment of Honghu lake is of great significance for acquiring its eutrophication status and ecological risks of nitrogen and phosphorus pollution. In the present research, we deployed eight sampling points and collected 50 cm height columnar sediments in October 2019. By measuring the content of total nitrogen (TN), total phosphorus (TP) and organic matters (OM) of sediment specimens from different depths, we examined the spatial distribution patterns of TN, TP and OM and their correlations. Furthermore, we evaluated the corresponding pollution status by using comprehensive pollution index. Results manifested that the TN content of Honghu sediments ranged from 467.8-8 454.5 mg/kg, averaging 2 167 mg/kg, indicating heavy pollution. Nearly half of surface sediments presented a TN content over 5 000 mg/kg. TP content ranged from 502.7 to 1 252.4 mg/kg, with an average value of 693.8 mg/kg. Except for Yangchai lake which suffered heavy pollution, most of the areas were subjected to medium TP pollution. The content of organic matters ranged from 5.0% to 24.9%, with an average value of 9.6%, also implying heavy pollution. In vertical scale, TN, TP and OM accumulated significantly in the surface layer of the sediments from 0 to 20 cm, and then declined rapidly with the increase of depth.
[41]
张曼, 殷鹏, 支鸣强, 等. 太湖藻型及草型湖区底泥内源污染及释放机制研究[J]. 环境科学学报, 2023, 43(6):247-257.
(ZHANG Man, YIN Peng, ZHI Ming-qiang, et al. Study on Endogenous Pollution and Release Mechanism of Algae and Grass Sediment in Taihu Lake[J]. Journal of Environmental Science, 2023, 43(6):247-257.) (in Chinese)
[42]
王孟浩. 武汉南湖沉积物、上覆水污染特征及沉积物磷释放特征研究[D]. 武汉: 湖北工业大学, 2021.
(WANG Meng-hao. Study on the Characteristics of Water Pollution and Phosphorus Release in Sediments and Overlying Sediments of Nanhu Lake in Wuhan[D]. Wuhan: Hubei University of Technology, 2021.) (in Chinese)
[43]
刘路明. 军山湖沉积物磷赋存形态的分布及对湖泊水质的影响[D]. 南昌: 华东交通大学, 2021.
(LIU Lu-ming. Distribution of Phosphorus Forms in Sediments of Junshan Lake and Its Influence on Lake Water Quality[D]. Nanchang: East China Jiaotong University, 2021.) (in Chinese)
[44]
李志清, 吴苏舒, 诸晓华, 等. 石臼湖表层沉积物营养盐与重金属分布及污染评价[J]. 水资源保护, 2020, 36(2): 73-78.
(LI Zhi-qing, WU Su-shu, ZHU Xiao-hua, et al. Distribution of Nutrients and Heavy Metals in Surface Sediments of Shijiu Lake and Its Pollution Assessment[J]. Water Resources Protection, 2020, 36(2):73-78.) (in Chinese)
[45]
高泽晋, 孟鑫, 张洪, 等. 梁子湖沉积物营养盐的空间分布特征及其污染评价[J]. 环境科学学报, 2016, 36(7):2382-2388.
(GAO Ze-jin, MENG Xin, ZHANG Hong, et al. Spatial Distribution and Pollution Evaluation of Nutrients in the Sediments of Liangzi Lake[J]. Acta Scientiae Circumstantiae, 2016, 36(7):2382-2388.) (in Chinese)
[46]
向速林, 吴涛哲, 龚聪远, 等. 鄱阳湖沉积物与水界面氮的迁移特征及污染评价[J]. 生态环境学报, 2021, 30(4): 781-786.
Abstract
可下载PDF全文。
(XIANG Su-lin, WU Tao-zhe, GONG Cong-yuan, et al. Transportation Features and Pollution Evaluation of Nitrogen at the Sediment-water Interface of Poyang Lake[J]. Ecology and Environmental Sciences, 2021, 30(4): 781-786.) (in Chinese)
[47]
周峰, 李朋, 翁茂芝, 等. 武汉龙阳湖、墨水湖沉积物重金属生态风险评价[J]. 中国环境科学, 2023, 43(10):5433-5443.
(ZHOU Feng, LI Peng, WENG Mao-zhi, et al. Ecological Risk Assessment of Heavy Metals in Sediments of Longyang Lake and Ink Lake in Wuhan[J]. China Environmental Science, 2023, 43(10): 5433-5443.) (in Chinese)
[48]
王欣, 陈欣瑶, 邹云, 等. 阳澄湖沉积物中氮、磷及有机质空间分布特征与污染评价[J]. 环境监控与预警, 2021, 13(3):44-49.
(WANG Xin, CHEN Xin-yao, ZOU Yun, et al. Spatial Distribution Characteristics of Nitrogen, Phosphorus and Organic Matter in Sediments of Yangcheng Lake and Pollution Evaluation[J]. Environmental Monitoring and Early Warning, 2021, 13(3):44-49.) (in Chinese)
[49]
王毅, 罗静波, 郭坤, 等. 长湖表层底泥营养元素分布特征分析[J]. 凯里学院学报, 2015, 33(6): 77-80.
(WANG Yi, LUO Jing-bo, GUO Kun, et al. Characteristics of Nutrients Distribution from Surface Sediments in Lake Changhu[J]. Journal of Kaili University, 2015, 33(6): 77-80.) (in Chinese)
[50]
王益民, 吴建政, 朱龙海, 等. 文登近岸海域表层沉积物分布特征及影响因素[J]. 海洋地质前沿, 2014, 30(8):23-28.
(WANG Yi-min, WU Jian-zheng, ZHU Long-hai, et al. The Distribution Pattern of Surface Sediments in Wendeng Offshore Area and Influenceing Factors[J]. Marine Geology Frontiers, 2014, 30(8): 23-28.) (in Chinese)
[51]
笪文怡, 黎云祥, 朱广伟, 等. 水文气象过程对千岛湖氮磷变化的影响[J]. 水生态学杂志, 2019, 40(5):9-19.
(DA Wen-yi, LI Yun-xiang, ZHU Guang-wei, et al. Influence of Hydrometeorological Processes on Nutrient Dynamics in Qiandao Lake[J]. Journal of Hydroecology, 2019, 40(5):9-19.) (in Chinese)
[52]
林莉, 潘雄. 洪湖水质问题核心及水质综合提升途径思考[J]. 长江科学院院报, 2023, 40(6):1-6,20.
Abstract
作为长江中游重要的生态敏感区域和节点区,洪湖多年来一直承接江汉平原的调蓄与灌溉功能,剧烈的人类活动导致洪湖水体污染和生态系统退化加剧,洪湖水质的提升现已成为实施长江保护修复攻坚战行动的重点。通过系统剖析发现洪湖水质提升的关键问题在于入湖水质不达标、内源污染较重以及水生态受损严重3个方面。要解决洪湖的水污染问题,应坚持系统思维和流域视角,做好洪湖外源控污截污、底泥清淤、湖区和湖滨带生态修复以及水资源科学调度利用等工作,并推行包括洪湖及其支流流域河湖长制联防联控联治机制、生态补偿机制等在内的综合水质提升管理措施。
(LIN Li, PAN Xiong. The Core of Water Quality Problem of Honghu Lake and Comprehensive Improvement Approaches[J]. Journal of Yangtze River Scientific Research Institute, 2023, 40(6):1-6,20.) (in Chinese)
As a critical ecologically sensitive area and a key node in the middle reaches of the Yangtze River, Honghu Lake has long served as a hub for water storage and irrigation in the Jianghan Plain. However, intense human activities have exacerbated water pollution and ecosystem degradation in the lake, making the improvement of Honghu Lake’s water quality a central objective of the ongoing Yangtze River conservation and restoration efforts. A comprehensive analysis reveals that the key challenges to enhancing the lake’s water quality lie in three main areas: inadequate inflow water quality, severe internal pollution, and degraded aquatic ecosystems. To tackle the water pollution of Honghu Lake, a systematic and basin-wide mindset must be adopted, encompassing effective measures such as controlling and intercepting external sources of pollution, sediment dredging, ecological restoration of the lake area and lakeshore, as well as scientifically allocating and utilizing water resources. In addition, comprehensive management strategies, including the establishment of an integrated water quality improvement framework, should be implemented. This framework would include a collaborative mechanism for joint prevention, control, and governance of Honghu Lake and its tributaries, as well as an ecological compensation mechanism.
[53]
刘聚涛, 温春云, 韩柳, 等. 2012—2017年鄱阳湖水位变化与氮磷响应特征研究[J]. 环境污染与防治, 2020, 42(10):1274-1279.
(LIU Ju-tao, WEN Chun-yun, HAN Liu, et al. Study on the Response Characteristics of Nitrogen and Phosphorus to Water Level Change of Poyang Lake during 2012-2017[J]. Environmental Pollution & Control, 2020, 42(10):1274-1279.) (in Chinese)
[54]
张洪, 薛雪, 郁达伟, 等. 鄱阳湖水位对沉积物磷释放的影响及总磷考核建议[J]. 人民长江, 2023, 54(1):46-52.
(ZHANG Hong, XUE Xue, YU Da-wei, et al. Study on Release Potential of Sediment Phosphorus under Water Level Fluctuation in Poyang Lake and Suggestions on Assessment[J]. Yangtze River, 2023, 54(1):46-52.) (in Chinese)
[55]
杨智婷, 冯民权. 扰动对湖泊沉积物磷释放的模拟试验研究[J]. 环境科学与技术, 2022, 45(增刊1):104-110.
(YANG Zhi-ting, FENG Min-quan. Simulated Experimental Study of Phosphorus Release from Lake Sediments by Disturbances[M]. Environmental Science and Technology, 2022,45(Supp.1):104-110.) (in Chinese)
[56]
何昶. 风浪扰动对浅水湖泊沉积物氮磷释放的影响[D]. 南昌: 南昌大学, 2022.
(HE Chang. Effect of Wind and Wave Disturbance on Nitrogen and Phosphorus Release from Shallow Lake Sediments[D]. Nanchang: Nanchang University, 2022.) (in Chinese)
[57]
谢平. 浅水湖泊内源磷负荷季节变化的生物驱动机制[J]. 中国科学(D辑:地球科学), 2005(增刊2):11-23.
(XIE Ping. Biological Driving Mechanism of Seasonal Variation of Endogenous Phosphorus Load in Shallow Lakes[J]. Science in China(Series D:Earth Science), 2005(Supp. 2):11-23.) (in Chinese)
[58]
李菲菲, 褚淑祎, 崔灵周, 等. 沉水植物生长和腐解对富营养化水体氮磷的影响机制研究进展[J]. 生态科学, 2018, 37(4): 225-230.
(LI Fei-fei, CHU Shu-yi, CUI Ling-zhou, et al. Research Advances on the Influence Mechanisms of Submerged Plants Growth and Decomposition on Nitrogen and Phosphorus in Eutrophic Water[J]. Ecological Science, 2018, 37(4): 225-230.) (in Chinese)
[59]
王正文, 姚晓龙, 姜星宇, 等. 季节与水文影响下鄱阳湖碟形湖湿地沉积物氮去除功能变化[J]. 长江流域资源与环境, 2022, 31(3):673-684.
(WANG Zheng-wen, YAO Xiao-long, JIANG Xing-yu, et al. Changes in the Sediment Nitrogen Removal Function of Saucer-shaped Depressions in Lake Poyang under Different Seasons and Hydrological Scenarios[J]. Resources and Environment in the Yangtze Basin, 2022, 31(3):673-684.) (in Chinese)
[60]
宋菲菲, 胡小贞, 金相灿, 等. 国外不同类型湖泊治理思路分析与启示[J]. 环境工程技术学报, 2013, 3(2):156-162.
(SONG Fei-fei, HU Xiao-zhen, JIN Xiang-can, et al. Analysis of Lake Management Strategies of Different Types of Lakes Abroad and Enlightenments for China[J]. Journal of Environmental Engineering Technology, 2013, 3(2):156-162.) (in Chinese)
[61]
袁赛波, 赵彬洁, 王红丽, 等. 汤逊湖沉积物营养盐污染特征评价及治理策略[J]. 长江流域资源与环境, 2022, 31(12):2729-2742.
(YUAN Sai-bo, ZHAO Bin-jie, WANG Hong-li, et al. Nutrients Pollution Characteristic Assessment and Treatment Strategy in Sediments of Tangxun Lake[J]. Resources and Environment in the Yangtze Basin, 2022, 31(12): 2729-2742.) (in Chinese)
[62]
王圣瑞, 李贵宝. 国外湖泊水环境保护和治理对我国的启示[J]. 环境保护, 2017, 45(10): 64-68.
(WANG Sheng-rui, LI Gui-bao. The Inspiration of International Lake Environment Protection and Governance Experience to China[J]. Environmental Protection, 2017, 45(10): 64-68.) (in Chinese)
PDF(8839 KB)

Accesses

Citation

Detail

Sections
Recommended

/