Changes of Typical Physical Habitat and Its Impact in the Middle and Lower Reaches of Yangtze River after Impoundment of Three Gorges Reservoir

CHAI Zhao-hui, GE Li-can, YAO Shi-ming, JIN Zhong-wu, LIU Xiao-guang, ZHANG Yun-chao

Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (12) : 1-8.

PDF(8918 KB)
PDF(8918 KB)
Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (12) : 1-8. DOI: 10.11988/ckyyb.20230844
River-Lake Protection and Regulation

Changes of Typical Physical Habitat and Its Impact in the Middle and Lower Reaches of Yangtze River after Impoundment of Three Gorges Reservoir

Author information +
History +

Abstract

The physical habitat of the middle and lower reaches of the Yangtze River has experienced significant changes after the impoundment of the Three Gorges Reservoir, thereby affecting river functions. Based on data analysis and literature review, this paper examined the alterations in typical physical habitats such as the hydrological condition, river morphology, and vegetation after the TGR operation and their subsequent impacts on flood prevention, navigation, water supply, and typical aquatic organisms. Key areas for further research were identified as follows: 1) monitoring, including systematic and long-term monitoring programs, and the assessment of the effectiveness of river (waterway) management projects and ecological regulation measures; 2) laws and mechanisms of changes in river morphology, vegetation in the main stream and shoals, and the responses and thresholds of flood levels and benthic animals to variations in the physical habitat; 3) methods for predicting medium and long-term trends of hydrological conditions under the influence of multiple factors, channel regulation technologies that adapt to changes in the physical habitat and meet demands, as well as reservoir operation schemes that align with water supply objectives, benthic animal and fish breeding needs. Additionally, integrated research efforts focusing on physical habitat changes, their impacts, and improvement strategies and technologies require increased attention.

Key words

physical habitat / change / river morphology / aquatic life / Three Gorges Reservoir

Cite this article

Download Citations
CHAI Zhao-hui , GE Li-can , YAO Shi-ming , et al . Changes of Typical Physical Habitat and Its Impact in the Middle and Lower Reaches of Yangtze River after Impoundment of Three Gorges Reservoir[J]. Journal of Yangtze River Scientific Research Institute. 2024, 41(12): 1-8 https://doi.org/10.11988/ckyyb.20230844

References

[1]
KIM J, AN K G. Integrated Ecological River Health Assessments, Based on Water Chemistry, Physical Habitat Quality and Biological Integrity[J]. Water, 2015, 7(11):6378-6403.
[2]
姚仕明, 胡呈维, 渠庚. 三峡水库下游河道演变与生态治理研究进展[J]. 长江科学院院报, 2021, 38(10): 16-26.
Abstract
在自然条件和人类活动影响下,三峡水库下游河道面临着水沙条件和河床演变的新变化,以及防洪、航运、发电、供水、生态等多目标协同治理的新需求,亟需深入开展三峡水库下游水沙输移与河道演变规律、河道生态治理技术方面的研究,促进河道治理与生态保护的协调融合。针对上述3个重要方面的研究成果进行了论述,并结合当前研究工作中的不足,提出了未来研究应重点关注的方向与内容,包括三峡水库下游河道水沙通量变化的时空变化趋势、不同河型河道重塑过程与水沙输移的互馈机理、受损河道边坡生境修复技术、堤岸生态改造技术以及生态友好型河道治理方法与技术等。
(YAO Shi-ming, HU Cheng-wei, QU Geng. Research Progress on River Evolution and Ecological Governance in the Lower Reaches of the Three Gorges Reservoir[J]. Journal of Yangtze River Research Institute, 2021, 38(10): 16-26.) (in Chinese)
[3]
郭文献, 金耀光, 李越, 等. 近60 年来气候变化和人类活动对长江中下游水文情势影响定量评价[J]. 长江流域资源与环境, 2021, 30(10): 2464-2470.
(GUO Wen-xian, JIN Yao-guang, LI Yue, et al. Quantitative Evaluation of the Impact of Climate Change and Human Activities on the Hydrological Situation of the Middle and Lower Reaches of the Yangtze River in the Past 60 Years[J]. Resources and Environment in the Yangtze Basin, 2021, 30(10): 2464-2470.) (in Chinese)
[4]
许全喜, 袁晶, 董炳江. 长江泥沙变化及河床冲淤研究[J]. 长江技术经济, 2019(3): 58-68.
(XU Quan-xi, YUAN Jing, DONG Bing-jiang. Sediment Change and River Bed Erosion and Deposition in the Yangtze River[J]. Technology and Economy of Changjiang, 2019(3): 58-68.) (in Chinese)
[5]
姚仕明, 邢国栋, 陈栋. 三峡建库前后长江中游河道输沙率变化分析[J]. 长江科学院院报, 2022, 39(8),10-16.
Abstract
三峡建库后,水库下游河道含沙水流长期处于严重次饱和状态,输沙由相对平衡状态转变为不平衡状态,输沙强度较自然条件下发生显著变化。根据三峡水库蓄水运用前后(1992—2017年)长江中游主要水文站断面、床沙与水文资料,从输沙率变化、床沙粒径变化、平滩流量等角度研究长江中游河道复式断面输沙强度问题,得出以下结论:三峡水库蓄水运用后,进入下游河道的泥沙大幅度较少,长江中游沿程水文站同流量级输沙率明显减少;床沙粒径沿程出现不同程度的粗化,其中荆江河段粗化最为明显,螺山至武汉河段略有粗化;螺山站和汉口站在自然条件下平滩流量附近输沙强度出现峰值,对应的水流挟沙能力为极大值。
(YAO Shi-ming, XING Guo-dong, CHEN Dong. Analysis of the Change of Sediment Transport Rate in the Middle Reaches of the Yangtze River before and after the Construction of the Three Gorges Reservoir[J]. Journal of Yangtze River Research Institute, 2022, 39(8):10-16. (in Chinese )
[6]
LUO X X, YANG S L, ZHANG J. The Impact of the Three Gorges Dam on the Downstream Distribution and Texture of Sediments along the Middle and Lower Yangtze River (Changjiang) and Its Estuary, and Subsequent Sediment Dispersal in the East China Sea[J]. Geomorphology, 2012, 179: 126-140.) (in Chinese)
[7]
蔡玉鹏, 杨志, 徐薇. 三峡水库蓄水后水温变化对四大家鱼自然繁殖的影响[J]. 工程科学与技术, 2017, 49(1):70-77.
(CAI Yu-peng, YANG Zhi, XU Wei. Effect of Water Temperature Variation after Impoundment of the Three Gorges Reservoir on Natural Reproduction of the Four Major Chinese Carps[J]. Advanced Engineering Sciences, 2017, 49(1):70-77.) (in Chinese)
[8]
邱如健, 王远坤, 王栋, 等. 三峡水库蓄水对宜昌—城陵矶河段水温情势影响研究[J]. 水利水电技术, 2020, 51(3):108-115.
(QIU Ru-jian, WANG Yuan-kun, WANG Dong, et al. Impacts of Three Gorges Reservoir on Water Temperature Regime between Yichang and Chengingji Reach[J]. Water Resources and Hydropower Engineering, 2020, 51(3):108-115.) (in Chinese)
[9]
陶雨薇, 王远坤, 王栋, 等. 三峡水库坝下水温变化及其对鱼类产卵影响[J]. 水力发电学报, 2018, 37(10):48-55.
(TAO Yu-wei, WANG Yuan-kun, WANG Dong, et al. Assessing Water Temperature Variations and Impacts on Fish Spawning Downstream of Three Gorges Dam[J]. Journal of Hydroelectric Engineering, 2018, 37(10): 48-55.) (in Chinese)
[10]
许全喜, 董炳江, 袁晶, 等. 三峡工程运用后长江中下游河道冲刷特征及其影响[J]. 湖泊科学, 2023, 35(2):650-661.
(XU Quan-xi, DONG Bing-jiang, YUAN Jing, et al. Scouring Effect of the Middle and Lower Reaches of the Yangtze River and Its Impact after the Impoundment of the Three Gorges Project[J]. Journal of Lake Sciences, 2023, 35(2): 650-661.) (in Chinese)
[11]
陈立, 崔超, 袁晶, 等. 长江中游典型顺直分汊河段冲刷调整的特性与机理[J]. 泥沙研究, 2023, 48(1):1-7.
(CHEN Li, CUI Chao, YUAN Jing, et al. Characteristics and Mechanism of Scouring Adjustment in Typical Straight and Straight River Sections in the Middle Reaches of the Yangtze River[J]. Sediment Research, 2023, 48(1):1-7.) (in Chinese)
[12]
黄群, 姜加虎, 赖锡军, 等. 洞庭湖湿地景观格局变化以及三峡工程蓄水对其影响[J]. 长江流域资源与环境, 2013, 22(7): 922-927.
(HUANG Qun, JIANG Jia-hu, LAI Xi-jun, et al. Changes of Landscape Structure in Dongting Lake Wetlands and the Evaluation on Impacts from Operation of the Three Gorges Project[J]. Resources and Environment in the Yangtze Basin, 2013, 22(7): 922-927.) (in Chinese)
[13]
胡振鹏, 葛刚, 刘成林. 鄱阳湖湿地植被退化原因分析及其预警[J]. 长江流域资源与环境, 2015, 24(3): 381-386.
(HU Zhen-peng, GE Gang, LIU Cheng-lin. Cause Analysis and Early Warning for Wetland Vegetation Degradation in Poyang Lake[J]. Resources and Environment in the Yangtze Basin, 2015, 24(3): 381-386.) (in Chinese)
[14]
周静, 万荣荣, 吴兴华, 等. 洞庭湖湿地植被长期格局变化(1987—2016年)及其对水文过程的响应[J]. 湖泊科学, 2020, 32(6): 1723-1735.
(ZHOU Jing, WAN Rong-rong, WU Xing-hua, et al. Patterns of Long-term Distribution of Typical Wetland Vegetation (1987-2016) and Its Response to Hydrological Processes in Lake Dongting[J]. Journal of Lake Sciences, 2020, 32(6): 1723-1735.) (in Chinese)
[15]
ZHOU X, WEN Z, HUANG Y, et al. Impacts of Dam Operation on Vegetation Dynamics of Mid-channel Bars in the Mid-Lower Yangtze River, China[J]. Remote Sensing, 2021, 13(20): 4190.
[16]
熊海滨, 孙昭华, 陈立, 等. 水文与岸滩变化对滨岸带南荻—芦苇群落适宜生境的影响: 以长江武汉河段为例[J]. 湖泊科学, 2022, 34(4): 1250-1261.
(XIONG Hai-bin, SUN Zhao-hua, CHEN Li, et al. Influence of Hydrological and Morphological Changes on the Habitats of Miscanthus Lutari-oriparius and Phragmites Australis in a River Flood Plain: a Case Study of Wuhan Reach of the Yangtze River[J]. Journal of Lake Sciences, 2022, 34(4): 1250-1261.) (in Chinese)
[17]
马建华. 完善流域防洪工程体系加快推进安澜长江建设[J]. 中国水利, 2021(15):1-3.
(MA Jian-hua. Improving the Flood Control Engineering System in the Basin and Accelerating the Construction of the Anlan Yangtze River[J]. China Water Resources, 2021(15):1-3.) (in Chinese)
[18]
夏军强, 刘鑫, 邓珊珊, 等. 三峡工程运用后荆江河段崩岸时空分布及其对河床调整的影响[J]. 湖泊科学, 2022, 34(1): 296-306.
(XIA Jun-qiang, LIU Xin, DENG Shan-shan, et al. Spatiotemporal Distribution of Bank Collapse in Jingjiang River Section after the Application of the Three Gorges Project and Its Impact on Riverbed Adjustment[J]. Journal of Lake Sciences, 2022, 34(1): 296-306.) (in Chinese)
[19]
唐金武, 由星莹, 李义天, 等. 三峡水库蓄水对长江中下游航道影响分析[J]. 水力发电学报, 2014, 33(1):102-107.
(TANG Jin-wu, YOU Xing-ying, LI Yi-tian, et al. Impacts of the Operation of Three Gorges Reservoir on Navigation Conditions in Middle and Lower Yangtze River[J]. Journal of Hydroelectric Engineering, 2014, 33(1):102-107.) (in Chinese)
[20]
刘怀汉, 尹书冉. 长江航道泥沙问题与治理技术进展[J]. 人民长江, 2018, 49(15): 18-24, 45.
(LIU Huai-han, YIN Shu-ran. Sediment Problems and Regulation Technology Progress of Changjiang Waterway[J]. Yangtze River, 2018, 49(15): 18-24, 45.) (in Chinese)
[21]
杨云平, 李明, 刘万利, 等. 长江荆江河段滩槽演变与航道水深资源提升关系[J]. 水科学进展, 2022, 33(2): 240-251.
(YANG Yun-ping, LI Ming, LIU Wan-li, et al. Relationship between Tidal Channel Evolution and Channel Depth Resource Enhancement in Jingjiang Section of Yangtze River[J]. Progress in Water Science, 2022, 33(2): 240-251.) (in Chinese)
[22]
王致维. 三峡水库运行后长江中下游分汊河段航道治理[J]. 水运工程, 2023, 604(1): 143-151.
(WANG Zhi-wei. Waterway Management of the Middle and Lower Reaches of the Yangtze River after the Operation of the Three Gorges Reservoir[J]. Water Transport Engineering, 2023, 604(1): 143-151.) (in Chinese)
[23]
徐照明. 2022 年长江流域水旱灾害防御工作[J]. 中国防汛抗旱, 2022, 32(12): 13-16.
(XU Zhao-ming. Prevention of Flood and Drought Disasters in the Yangtze River Basin in 2022[J]. China Flood Control and Drought Relief, 2022, 32(12): 13-16.) (in Chinese)
[24]
许继军, 周涛. 长江流域2022“汛期反枯”现象警示与对策[J]. 中国水利, 2023(11): 12-15.
(XU Ji-jun, ZHOU Tao. Warning and Countermeasures of the Phenomenon of “Reverse Drought in Flood Season” in the Yangtze River Basin in 2022[J]. China Water Resources, 2023(11): 12-15.) (in Chinese)
[25]
王晓燕, 田谷顺, 韩帅, 等. 三峡运行对洞庭湖区供水影响及供水规划思路探讨[J]. 湖南水利水电, 2021(4): 4-6, 18.
(WANG Xiao-yan, TIAN Gu-shun, HAN Shuai, et al. Influence of Three Gorges Operation on Water Supply in Dongting Lake Area and Discussion on Water Supply Planning Ideas[J]. Hunan Hydro & Power, 2021(4): 4-6, 18.) (in Chinese)
[26]
高华斌, 唐兵. 应对长江口咸潮入侵的临界流量经验模型研究[J]. 长江科学院院报, 2020, 37(4): 25-29.
Abstract
1994年以来,长江口咸潮入侵严重威胁当地供水安全,随着长江上游水库群陆续建成,有关部门提出了通过上游水库群压咸调度保障长江口地区供水安全的方案。为明确压咸调度的目标流量(即临界流量),基于统计分析的方法,采用多元回归分析和主成分分析方法,选取实测站点数据建立了盐度-潮差-入海流量的相关关系统计模型,研究了咸潮发生的机理;通过模型分析多次咸潮入侵数据,确定临界流量为一个变化值,潮差290~335 cm下的临界流量在9 390~21 633 m<sup>3</sup>/s之间。研究表明,当长江口咸潮入侵时,单独依靠长江上游水库调度压咸所需的流量大,响应时间长,压咸效果不明显。因此,实际压咸调度应通过流域整体调度与本地蓄淡避咸水库共同作用应对咸潮入侵。
(GAO Hua-bin, TANG Bing. Empirical Model of Critical Flow Rate in Response to Salt Water Intrusion in the Yangtze River Estuary[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(4): 25-29.) (in Chinese)
Salt water intrusion severely threatens the water supply safety in the Yangtze River estuary. To determine the target (critical) flow rate for the scheduling of repelling salt water, we studied the mechanism of salt tide by establishing an empirical model of the relation among salinity, tidal range, and flow rate into the sea via statistical analysis. We conclude that the critical flow rate is a varying value ranging between 9 390 m<sup>3</sup>/s and 21 633 m<sup>3</sup>/s when tidal range is 290-335 cm. In response to salt water intrusion, scheduling of reservoirs in the upstream of Yangtze River alone has no significant effect as it requires large discharge and long time. In conclusion, in practice we should combine the comprehensive scheduling of the whole watershed with the storage of freshwater and repelling salt water in local reservoirs.
[27]
马雅雪, 姚维林, 袁赛波, 等. 长江干流宜昌—安庆段大型底栖动物群落结构及环境分析[J]. 水生生物学报, 2019, 43(3): 634-642.
(MA Ya-xue, YAO Wei-lin, YUAN Sai-bo, et al. Community Structure and Environmental Analysis of Macrozoobenthos in yichang-anqing Reaches of the Yangtze Mainstream[J]. Acta Hydrobiologica Sinica, 2019, 43(3): 634-642.) (in Chinese)
[28]
班璇, 郭舟, 熊兴基, 等. 长江中游典型河段底栖动物的物理栖息地模型构建与应用[J]. 水利学报, 2020, 51(8):937-946.
(BAN Xuan, GUO Zhou, XIONG Xing-ji, et al. Construction and Application of Physical Habitat Model for Benthic Animals in Typical River Sections of the Middle Reaches of the Yangtze River[J]. Journal of Hydraulic Engineering, 2020, 51(8):937-946.) (in Chinese)
[29]
PAN B, WANG H, WANG H. A Floodplain-scale Lake Classification Based on Characteristics of Macroinvertebrate Assemblages and Corresponding Environmental Properties[J]. Limnologica, 2014, 49: 10-17.
[30]
和雅静, 王洪铸, 舒凤月, 等. 长江流域底栖动物资源的宏观格局[J]. 水生生物学报, 2019, 43(增刊l): 9-17.
(HE Ya-jing, WANG Hong-zhu, SHU Feng-yue, et al. Macroscopic Pattern of Benthic Animal Resources in the Yangtze River Basin[J]. Chinese Journal of Hydrobiology, 2019, 43(Supp. l): 9-17.) (in Chinese)
[31]
俞立雄. 长江中游四大家鱼典型产卵场地形及水动力特征研究[D]. 重庆: 西南大学, 2018.
(YU Li-xiong. Study on Topography and Hydrodynamic Characteristics of Typical Spawning Grounds of Four Major Fishes in the Middle Reaches of the Yangtze River[D]. Chongqing: Southwest University, 2018.) (in Chinese)
[32]
YI Y J, SUN J, ZHANG S, et al. Assessment of Chinese Sturgeon Habitat Suitability in the Yangtze River (China): Comparison of Generalized Additice Model, Data-driven Fuzzy Logic Model, and Preference Curve Model[J]. Journal of Hydrology, 2016, 536:447-456.
[33]
毕雪, 田志福, 杨梦斐. 葛洲坝电站运行对中华鲟产卵场水流条件的影响[J]. 人民长江, 2016, 47(17):25-29.
(BI Xue, TIAN Zhi-fu, YANG Meng-fei. Influence of Different Operation Modes of Gezhouba Hydropower Station on Flow Condition of Chinese Sturgeon’s Spawning Ground[J]. Yangtze River, 2016, 47(17):25-29.) (in Chinese)
[34]
YU L, LIN J, CHEN D, et al. Ecological Flow Assessment to Improve the Spawning Habitat for the Four Major Species of Carp of the Yangtze River: a Study on Habitat Suitability Based on Ultrasonic Telemetry[J]. Water, 2018, 10(5): 600.
[35]
张尚弘. 长江四大家鱼产卵场栖息地适宜度模拟[J]. 应用基础与工程科学学报, 2011, 19(增刊1): 123-129.
(ZHANG Shang-hong. Habitat Suitability Simulation of Four Major Carp Spawning Grounds in the Yangtze River[J]. Journal of Applied Basic and Engineering Sciences, 2011, 19(Supp. 1): 123-129.) (in Chinese)
[36]
林俊强, 李游坤, 刘毅, 等. 刺激鱼类自然繁殖的生态调度和适应性管理研究进展[J]. 水利学报, 2022, 53(4): 483-495.
(LIN Jun-qiang, LI You-kun, LIU Yi, et al. Research Progress on Ecological Scheduling and Adaptive Management for Stimulating Natural Reproduction of Fish[J]. Journal of Hydraulic Engineering, 2022, 53(4): 483-495.) (in Chinese)
[37]
陈敏. 长江流域水库生态调度成效与建议[J]. 长江技术经济, 2018( 2): 36-40.
(CHEN Min. Effectiveness and Suggestions of Ecological Dispatch of Reservoirs in the Yangtze River Basin[J]. Yangtze River Technology and Economics, 2018(2): 36-40.) (in Chinese)
[38]
徐薇, 杨志, 陈小娟, 等. 三峡水库生态调度试验对四大家鱼产卵的影响分析[J]. 环境科学研究, 2020, 33(5): 1129-1139.
(XU Wei, YANG Zhi, CHEN Xiao-juan, et al. Three Gorges Reservoir Ecological Operation Effect on the Spawning of the Four Major Chinese Carps[J]. Research of Environmental Sciences, 2020, 33(5): 1129-1139.) (in Chinese)
PDF(8918 KB)

Accesses

Citation

Detail

Sections
Recommended

/