Pumped Concrete with Multiple Mineral Admixtures Used in Sluice Construction

PENG Jian, CAO Kai-feng, YAN Jian-jun, LIU Rong-chao

Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (12) : 155-161.

PDF(5919 KB)
PDF(5919 KB)
Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (12) : 155-161. DOI: 10.11988/ckyyb.20230811
Hydraulic Structure and Material

Pumped Concrete with Multiple Mineral Admixtures Used in Sluice Construction

Author information +
History +

Abstract

The intricate structure of sluice coupled with the high dosage of binder materials in pumped concrete can lead to various cracks. We examined the performance of pumped concrete mixed with fly ash, slag powder, or both in various dosages. Experimental tests include concrete mixing, mechanical properties, deformation, thermal characteristics, and durability. Findings indicate that mineral admixture combining slag powder and fly ash significantly enhances concrete mix performance. Specifically, concrete incorporating 20% fly ash and 20% slag powder exhibits nearly equivalent strength to concrete with 30% fly ash alone, while reducing the adiabatic temperature rise by 2.9 ℃ and improving crack resistance. This composite admixture could help address the cracking problem for the pumped concrete used in the sluice of the Yangtze River to Huaihe River Diversion Project.

Key words

multiple mineral admixtures / fly ash / slag power / sluice / pumped concrete

Cite this article

Download Citations
PENG Jian , CAO Kai-feng , YAN Jian-jun , et al. Pumped Concrete with Multiple Mineral Admixtures Used in Sluice Construction[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(12): 155-161 https://doi.org/10.11988/ckyyb.20230811

References

[1]
周召纯. 崔家营航电枢纽工程泄水闸裂缝成因及处理[J]. 中国水运, 2013, 13(1):245-246.
(ZHOU Zhao-chun. Causes and Treatment of Cracks in the Discharge Gate of Cuijiaying Avionics Hub Project[J]. China Water Transport, 2013, 13(1):245-246.) (in Chinese)
[2]
傅旭. 近尾洲水电厂泄洪闸闸墩裂缝成因研究分析[J]. 湖南水利水电, 2014(4): 22-26.
(FU Xu. Study and Analysis on the Causes of Cracks in Pier of Flood Discharge Gate of Jinweizhou Hydropower Plant[J]. Hunan Hydro & Power, 2014(4):22-26.) (in Chinese)
[3]
鲁立三, 李娜, 乔瑞社. 某水闸闸室及胸墙裂缝成因分析[J]. 南水北调与水利科技, 2015, 13(1):222-224.
(LU Li-san, LI Na, QIAO Rui-she. Analysis on the Genesis of Cracks in the Sluice Chamber and Chest Wall of a Sluice[J]. South-to-North Water Diversion and Water Science and Technology, 2015, 13(1):222-224.) (in Chinese)
[4]
郭士红. 水闸混凝土底板施工中裂缝产生原因浅析[J]. 山东水利, 2017(4): 28-29.
(GUO Shi-hong. Analysis on the Causes of Cracks in the Construction of Sluice Concrete Floor[J]. Shandong Water Resources, 2017(4): 28-29.) (in Chinese)
[5]
付艳艳. 水闸水工混凝土结构裂缝处理技术应用分析[J]. 水利技术监督, 2022, 30(4): 201-203.
(FU Yan-yan. Application Analysis of Crack Treatment Technology for Hydraulic Concrete Structure of Sluice[J]. Technical Supervision in Water Resources, 2022, 30(4): 201-203.) (in Chinese)
[6]
周成洋, 林立, 沈明. 水闸闸墩常见裂缝成因及处理措施[J]. 江苏水利, 2021(11):28-31,56.
(ZHOU Cheng-yang, LIN Li, SHEN Ming. Causes and Treatment Measures of Common Cracks in Sluice Piers[J]. Jiangsu Water Resources, 2021(11):28-31,56.) (in Chinese)
[7]
赵之瑾, 关新强. 水闸闸墩裂缝成因及防治措施[J]. 水利水电科技进展, 2003, 23(4): 62-65.
(ZHAO Zhi-jin, GUAN Xin-qiang. Causes of Cracking in Sluice Abutment and Preventive Measures[J]. Advances in Science and Technology of Water Resources, 2003, 23(4): 62-65.) (in Chinese)
[8]
吴睿. 水利工程闸墩裂缝的原因及处理措施[J]. 黑龙江水利科技, 2014, 42(11): 140-141, 153.
(WU Rui. Causes and Treatment Measures of Cracks in Pier of Water Conservancy Project[J]. Heilongjiang Hydraulic Science and Technology, 2014, 42(11): 140-141, 153.) (in Chinese)
[9]
史明政, 李亚鹏, 徐雪飞, 等. 水闸闸墩裂缝形成因素及其控制对策研究[J]. 水利规划与设计, 2016(8): 71-73.
(SHI Ming-zheng, LI Ya-peng, XU Xue-fei, et al. Study on Forming Factors and Control Countermeasures of Cracks in Sluice Pier[J]. Water Resources Planning and Design, 2016(8): 71-73.) (in Chinese)
[10]
马跃峰, 朱岳明, 刘有志, 等. 姜唐湖退水闸泵送混凝土温控防裂反馈研究[J]. 水力发电, 2006, 32(1): 33-35.
(MA Yue-feng, ZHU Yue-ming, LIU You-zhi, et al. Feedback Study of Temperature Control and Crack Prevention of Jiangtanghu Pump Concrete Sluice during Construction[J]. Water Power, 2006, 32(1): 33-35.) (in Chinese)
[11]
张子明, 郭兴文, 杜荣强. 水化热引起的大体积混凝土墙应力与开裂分析[J]. 河海大学学报, 2002, 30(5):12-16.
(ZHANG Zi-ming, GUO Xing-wen, DU Rong-qiang. Analysis of Stress and Cracking of Large-volume Concrete Wall Induced by Heat of Hydration[J]. Journal of Hohai University, 2002, 30(5):12-16.) (in Chinese)
[12]
朱丽娟, 张子明. 江尖水利枢纽大体积混凝土施工仿真研究及温控措施[J]. 水利与建筑工程学报, 2008, 6(2):1-4,7.
(ZHU Li-juan, ZHANG Zi-ming. Emulation Research and Temperature Control Measures for Construction of Mass Concrete in Jiangjian Hydro Complex[J]. Journal of Water Resources and Architectural Engineering, 2008, 6(2): 1-4, 7.) (in Chinese)
[13]
陈垒. 展鹏水电站拦河水闸大体积混凝土施工温度控制措施[J]. 科学技术创新, 2021(12):135-136.
(CHEN Lei. Temperature Control Measures for Large-volume Concrete Construction of Barrage Sluice of Zhanpeng Hydropower Station[J]. Science and Technology Innovation, 2021(12): 135-136.) (in Chinese)
[14]
曹兆强. 硅粉混凝土施工技术在新疆和田地区皮山河克里阳渠枢纽水闸工程建设中的应用[J]. 建材发展导向, 2023, 21(12):15-17.
(CAO Zhao-qiang. Application of Silica Powder Concrete Construction Technology in the Construction of the Keliyang Canal Hub Sluice Project in Pishan River, Hotan Prefecture, Xinjiang[J]. Building Materials Development Orientation, 2023, 21(12):15-17.) (in Chinese)
[15]
余舟, 杨华全, 王磊, 等. 粉煤灰品质对混凝土性能影响试验研究[J]. 混凝土, 2019(12): 80-83.
(YU Zhou, YANG Hua-quan, WANG Lei, et al. Study on Effect of Quality of Fly Ash on Concrete Performance[J]. Concrete, 2019(12): 80-83.) (in Chinese)
[16]
阎墙渝. 粉煤灰在复合胶凝材料水化过程中的作用机理[J]. 硅酸盐学报, 2007, 35(增刊1):167-171.
(YAN Qiang-yu. Mechanism of Fly Ash in the Hydration Process of Composite Cementitious Materials[J]. Journal of the Chinese Ceramic Society, 2007, 35(Supp. 1): 167-171. ) (in Chinese)
[17]
傅博, 程臻赟, 韩静云. 碱粉煤灰矿渣混凝土的抗渗性能实验研究[J]. 硅酸盐通报, 2018, 37(7): 2255-2259.
Abstract
抗渗性是混凝土重要的耐久性指标之一.通过对比研究了不同固态分散相组成的碱粉煤灰矿渣混凝土的抗渗性能,并结合X-射线衍射(XRD)、傅立叶转变红外光谱(FT-IR)、扫描电子显微镜(SEM)、压汞法(MIP)对碱粉煤灰矿渣水泥石的物相组成和微观结构进行分析.结果表明:碱矿渣混凝土水化产物主要为低Ca/Si比的(I)C-S-H凝胶,体系中随着粉煤灰掺量的增大,水化产物逐渐向聚合度更高的C(N)-A-S-H凝胶结构转变;当粉煤灰掺量不超过30%,粉煤灰能够优化碱粉煤灰矿渣体系孔隙结构,提高碱粉煤灰矿渣混凝土的抗渗性;当粉煤灰掺量大于30%,粉煤灰较低的活性导致水泥石水化产物数量减少,水泥石大孔数量和总孔隙量增大,相应混凝土抗渗性能呈明显下降趋势.
(FU Bo, CHENG Zhen-yun, HAN Jing-yun. Experimental Study on Impermeability of Alkali Activated Fly Ash-slag Concrete[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(7): 2255-2259.) (in Chinese)
抗渗性是混凝土重要的耐久性指标之一.通过对比研究了不同固态分散相组成的碱粉煤灰矿渣混凝土的抗渗性能,并结合X-射线衍射(XRD)、傅立叶转变红外光谱(FT-IR)、扫描电子显微镜(SEM)、压汞法(MIP)对碱粉煤灰矿渣水泥石的物相组成和微观结构进行分析.结果表明:碱矿渣混凝土水化产物主要为低Ca/Si比的(I)C-S-H凝胶,体系中随着粉煤灰掺量的增大,水化产物逐渐向聚合度更高的C(N)-A-S-H凝胶结构转变;当粉煤灰掺量不超过30%,粉煤灰能够优化碱粉煤灰矿渣体系孔隙结构,提高碱粉煤灰矿渣混凝土的抗渗性;当粉煤灰掺量大于30%,粉煤灰较低的活性导致水泥石水化产物数量减少,水泥石大孔数量和总孔隙量增大,相应混凝土抗渗性能呈明显下降趋势.
[18]
普少昌, 周喻, 张宏博, 等. 含铁尾矿粉和粉煤灰混凝土强度和耐久性研究[J]. 非金属矿, 2021, 44(6): 84-87,93.
(PU Shao-chang, ZHOU Yu, ZHANG Hong-bo, et al. Study on the Strength and Durability of Concrete Containing Iron Tailings Powder and Fly Ash[J]. Journal of Nonmetallic Minerals, 2021, 44(6): 84-87,93.) (in Chinese)
[19]
陈琳, 潘如意, 沈晓冬, 等. 粉煤灰-矿渣-水泥复合胶凝材料强度和水化性能[J]. 建筑材料学报, 2010, 13(3):380-384.
(CHEN Lin, PAN Ru-yi, SHEN Xiao-dong, et al. Strength and Hydration Property of Fly Ash-slag-cement Composite Cementitious Material[J]. Journal of Building Materials, 2010, 13(3):380-384.) (in Chinese)
[20]
李涛, 程鲲, 王振红. 水闸结构高性能矿渣混凝土防裂措施研究[J]. 大坝与安全, 2018(5): 15-20.
(LI Tao, CHENG Kun, WANG Zhen-hong. Study on Crack Prevention Measures for High Performance Slag Concrete of Sluice Structure[J]. Dam & Safety, 2018(5): 15-20.) (in Chinese)
[21]
隋伟, 陈良, 肖阳, 等. 高炉矿渣粉对混凝土性能的影响研究[J]. 人民珠江, 2022, 43(12): 13-18, 54.
(SUI Wei, CHEN Liang, XIAO Yang, et al. Effect of Blast Furnace Slag Powder on Concrete Performance[J]. Pearl River, 2022, 43(12): 13-18, 54.) (in Chinese)
PDF(5919 KB)

Accesses

Citation

Detail

Sections
Recommended

/