Extraction and Spatiotemporal Variation of Poyang Lake Water Body Based on Multi-source and Multi-phase Images

LE Ying, LIU Ju-tao, WEN Hui

Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (8) : 164-171.

PDF(12939 KB)
PDF(12939 KB)
Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (8) : 164-171. DOI: 10.11988/ckyyb.20230268
Water Conservancy Informatization

Extraction and Spatiotemporal Variation of Poyang Lake Water Body Based on Multi-source and Multi-phase Images

Author information +
History +

Abstract

Under the influence of climate change, the water area of Poyang Lake exhibits seasonal fluctuations. To elucidate these changes comprehensively, we propose a water information extraction approach that integrates multi-temporal radar images and optical data. Leveraging Sentinel-1A radar images and Sentinel-2 optical images as our research datasets, we initiated a sequence of data preprocessing steps on the remote sensing image set. Employing the Sentinel-1 dual polarized water index (SDWI) and the improved normalized differential water index (MNDWI), we delineated the lake’s boundary and computed its water area using radar and optical data. The precision, timing, and change detection of our water extraction results were evaluated meticulously. Analyzing the lake area’s change trends aims to furnish scientific insights for disaster management and Poyang Lake’s conservation. Our findings revealed that: 1)The water bodies of Poyang Lake extracted from radar and optical remote sensing data were mostly congruent. Radar image extraction outperformed optical image extraction when delineating farmlands, small water bodies, and cloud-covered areas, suggesting radar images’ superiority in capturing comprehensive water information. 2)The average water area of Poyang Lake during normal, wet, and dry seasons is 3 686.49, 4 077.73, and 2 612.81 km2, respectively, with the wet season’s water volume being 1.56 times that of the dry season. 3)Time-series water extraction results from radar images exhibited strong consistency with water level variation data from Xingzi Station, Duchang Station, Hukou Station, and Kangshan Station, yielding Pearson correlation coefficients of 0.89, 0.87, 0.90, and 0.81, respectively.

Key words

Poyang Lake / water extraction / spatiotemporal variation / MNDWI / SDWI / change detection

Cite this article

Download Citations
LE Ying , LIU Ju-tao , WEN Hui. Extraction and Spatiotemporal Variation of Poyang Lake Water Body Based on Multi-source and Multi-phase Images[J]. Journal of Yangtze River Scientific Research Institute. 2024, 41(8): 164-171 https://doi.org/10.11988/ckyyb.20230268

References

[1]
HUANG A, LIU X, PENG W, et al. Spatiotemporal Characteristics, Influencing Factors and Evolution Laws of Water Exchange Capacity of Poyang Lake[J]. Journal of Hydrology, 2022, 609: 127717.
[2]
LIU Z, WANG X, JIA S, et al. Multi-methods to Investigate Spatiotemporal Variations of Nitrogen-nitrate and Its Risks to Human Health in China’s Largest Fresh Water Lake (Poyang Lake)[J]. The Science of the Total Environment, 2023, 863: 160975-160986.
[3]
XU J, BAI Y, YOU H, et al. Water Quality Assessment and the Influence of Landscape Metrics at Multiple Scales in Poyang Lake Basin[J]. Ecological Indicators, 2022, 141: 109096-109104.
[4]
黄兰贵, 殷环环. 近十年鄱阳湖出口水质变化趋势及影响因素分析[J]. 人民长江, 2022, 53(增刊2):15-19,33.
(HUANG Lan-gui, YIN Huan-huan. Analysis on the Change Trend and Influencing Factors of Outlet Water Quality of Poyang Lake in Recent Ten Years[J]. Yangtze River, 2022, 53(Supp.2):15-19, 33. (in Chinese))
[5]
冯崎, 王琦, 黄海兰, 等. 基于Sentinel-1双极化数据改进水体提取的Otsu算法[J]. 遥感技术与应用, 2022, 37(4):1003-1011.
Abstract
基于SAR图像的阈值分割法是水体信息有效提取的常用方法之一。针对Otsu算法对于SAR影像水体提取精度低、噪声大的问题,以C波段Sentinel-1 SAR为数据源,提出一种基于Otsu算法的SAR图像水体提取新方法。该方法首先基于双极化数据构建自然指数函数,优化原始Sentinel-1数据图像像元直方图分布,再结合Otsu算法对图像进行水体提取,最后基于DEM数据去除误提取的山体阴影。以同一天的Landsat 8光学影像作为真实水体样本进行精度评定,结果表明:在不同水体占比情况下,该方法水体提取精度均优于Otsu算法,在水体占比小于10%时综合精度提升约为20%—60%,而且噪声小、适用性强,可用于快速高效获取大范围内水体信息。
(FENG Qi, WANG Qi, HUANG Hai-lan, et al. Improved Otsu Algorithm for Water Extraction Based on Sentinel-1 Dual-polarization Data[J]. Remote Sensing Technology and Application, 2022, 37(4): 1003-1011. (in Chinese))
[6]
王国杰, 胡一凡, 张森, 等. 深度卷积神经网络的遥感影像水体识别[J]. 遥感学报, 2022, 26(11):2304-2316.
(WANG Guo-jie, HU Yi-fan, ZHANG Sen, et al. Water Identification from the GF-1 Satellite Image Based on the Deep Convolutional Neural Networks[J]. National Remote Sensing Bulletin, 2022, 26(11):2304-2316. (in Chinese))
[7]
张磊, 韩秀珍, 翁富忠, 等. 基于Sentinel-2A MSI数据的水体信息提取算法对比研究[J]. 激光与光电子学进展, 2022, 59(12): 1228007.
(ZHANG Lei, HAN Xiu-zhen, WENG Fu-zhong, et al. Comparison of Water Information Extraction Algorithms Based on Sentinel-2A MSI Data[J]. Laser & Optoelectronics Progress, 2022, 59(12): 505-515. (in Chinese))
[8]
何彬方, 姚筠, 冯妍, 等. 基于Sentinel-1A的安徽省2020年梅雨期洪水淹没监测[J]. 自然资源遥感, 2023, 35(1): 140-147.
(HE Bin-fang, YAO Yun, FENG Yan, et al. Sentinel-1A Based Flood Inundation Monitoring in Anhui Province during the Plum Rain Period of 2020[J]. Remote Sensing for Natural Resources, 2023, 35(1): 140-147. (in Chinese))
[9]
黄翀, 张晨晨, 刘庆生, 等. 结合光学与雷达影像多特征的热带典型人工林树种精细识别[J]. 林业科学, 2021, 57(7): 80-91.
(HUANG Chong, ZHANG Chen-chen, LIU Qing-sheng, et al. Multi-feature Classification of Optical and SAR Remote Sensing Images for Typical Tropical Plantation Species[J]. Scientia Silvae Sinicae, 2021, 57(7): 80-91. (in Chinese))
[10]
乐颖, 夏元平, 刘媛媛, 等. 结合SAR与光学遥感的疑似稀土矿非法开采情况识别方法[J]. 遥感信息, 2022, 37(3): 109-115.
(LE Ying, XIA Yuan-ping, LIU Yuan-yuan, et al. Identification Method of Illegal Mining of Suspected Rare Earth Ore Combining SAR and Optical Remote Sensing[J]. Remote Sensing Information, 2022, 37(3): 109-115. (in Chinese))
[11]
段伟芳, 温小乐, 徐涵秋, 等. 基于光学与雷达影像变化检测的2020年鄱阳湖洪灾评估与分析[J]. 地球信息科学学报, 2022, 24(12):2435-2447.
Abstract
利用遥感对地观测技术对2020年夏季鄱阳湖地区发生的洪水灾情进行评估和分析,分别选取Landsat 8卫星4月和 Sentinel-1A雷达卫星7月的影像作为洪水发生前、后的影像,利用遥感专题信息提取、随机森林分类和变化检测技术揭示洪水淹没范围,以及被淹没的主要土地覆盖类型面积,同时结合水文气象和地形数据进行灾情和受灾原因分析。研究结果表明,鄱阳湖2020年洪灾的淹没面积为1961.95 km2,共造成区内110.83 km2建筑用地、760.54 km2耕地、71.59 km2林地、992.02 km2草地和26.97 km2裸地被淹,其中尤以鄱阳县受灾最为严重,其总受灾面积达到514 km2,其次为新建区与余干县,分别达到了330 km2和310 km2。持续2个月的强降雨使得鄱阳湖流域的水位超过了其1998年特大洪水的水位,加上长江水倒灌,湖区地势北高南低,积水不能及时排出,圩堤决口等诸多水文气象和地形因素造成了此次鄱阳湖的特大洪灾。
(DUAN Wei-fang, WEN Xiao-le, XU Han-qiu, et al. Assessment and Analysis of the 2020 Poyang Lake Flood Hazard Based on Optical and Radar Image Assisted Change Detection[J]. Journal of Geo-Information Science, 2022, 24(12):2435-2447. (in Chinese))
[12]
MU S, YANG G, XU X, et al. Assessing the Inundation Dynamics and Its Impacts on Habitat Suitability in Poyang Lake Based on Integrating Landsat and MODIS Observations[J]. The Science of the Total Environment, 2022, 834: 154936-154952.
[13]
HERNANDEZ-SUAREZ J S, NEJADHASHEMI A P, FERRIBY H, et al. Performance of Sentinel-1 and 2 Imagery in Detecting Aquaculture Water Bodies in Bangladesh[J]. Environmental Modelling & Software, 2022, 157: 105534-105544.
[14]
徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5): 589-595.
(XU Han-qiu. A Study on Information Extraction of Water Body with the Modified Normalized Difference Water Index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5): 589-595. (in Chinese))
[15]
贾诗超, 薛东剑, 李成绕, 等. 基于Sentinel-1数据的水体信息提取方法研究[J]. 人民长江, 2019, 50(2):213-217.
(JIA Shi-chao, XUE Dong-jian, LI Cheng-rao, et al. Study on New Method for Water Area Information Extraction Based on Sentinel-1 Data[J]. Yangtze River, 2019, 50(2):213-217. (in Chinese))
[16]
吴斌, 章海鑫, 吴子君, 等. 2020-2021年鄱阳湖及其河口渔业资源调查[J/OL]. 水生态学杂志. [2023-02-08]. https://kns-cnki-net.webvpn.ecut.edu.cn/kcms/detail/42.1785.x.20230130.1149.001.html
(WU Bin, ZHANG Hai-xin, WU Zi-jun, et al. Investigation of Fishery Resources in Poyang Lake and Its Estuary in 2020-2021[J/OL]. Journal of Hydroecology. [2023-02-08]. https://kns-cnki-net.webvpn.ecut.edu.cn/kcms/detail/42.1785.x.20230130.1149.001.html in Chinese))
[17]
吴娟, 张奇, 李云良, 等. 鄱阳湖洪泛系统水位-面积迟滞关系的形成机制及演变[J]. 长江流域资源与环境, 2022, 31(10): 2155-2165.
(WU Juan, ZHANG Qi, LI Yun-liang, et al. Formation Mechanism and Evolution of Stage-area Hysteretic Relationships in Floodplain System of Poyang Lake[J]. Resources and Environment in the Yangtze Basin, 2022, 31(10): 2155-2165. (in Chinese))
PDF(12939 KB)

Accesses

Citation

Detail

Sections
Recommended

/