Physical Model Test on the Scale of Drainage Pump Station on Tidal River

LIU Zhong-feng, HUANG Ben-sheng, LIU Da, LI Ming

Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (4) : 23-28.

PDF(1240 KB)
PDF(1240 KB)
Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (4) : 23-28. DOI: 10.11988/ckyyb.20221583
River-Lake Protection And Regulation

Physical Model Test on the Scale of Drainage Pump Station on Tidal River

  • LIU Zhong-feng1,2,3,4, HUANG Ben-sheng1,2,3,4, LIU Da1,2,3,4, LI Ming1,2,3,4
Author information +
History +

Abstract

Determining the optimal scale of pump station is a crucial aspect of designing drainage systems in tidal rivers.We constructed a physical model of a tidal river system and conducted experimental investigations on the scales of two pump stations situated at the outlets under selected hydrological boundary conditions and project operational requirements.Our study reveals that:(a) constrained by the river's discharge capacity, a critical scale exists for the pump station, beyond which the water level remains unaffected by further scale increments;(b) the extent of water level reduction due to drainage pumping correlates closely with the proximity of the pump station, with greater proximity resulting in more pronounced water level drops. Building upon these insights and conducting multiple trials, we propose an optimal scale combination for the two pump stations to meet design specifications:80 m3/s for the Wenchong Pump Station situated farther away, and 130 m3/s for the closer Jinzichong Pump Station. This research offers valuable data for optimizing design processes and serves as a reference for similar projects.

Key words

tidal river / scale of drainage pump station / physical model test / water level / rehabilitation project

Cite this article

Download Citations
LIU Zhong-feng, HUANG Ben-sheng, LIU Da, LI Ming. Physical Model Test on the Scale of Drainage Pump Station on Tidal River[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(4): 23-28 https://doi.org/10.11988/ckyyb.20221583

References

[1] 彭 慧, 刘 璐, 姜钧耀, 等. 感潮河段上游洪水与河口潮位遭遇研究[J]. 人民黄河, 2021, 43(8): 44-47. (PENG Hui, LIU Lu, JIANG Jun-yao, et al. Research on Encounter of Floods and Tides in the Tidal Watercourse[J]. Yellow River, 2021, 43(8): 44-47.(in Chinese))
[2] 魏乾坤, 刘曙光, 钟桂辉, 等. 平原感潮河网地区河道洪水对村镇内涝的影响[J]. 长江科学院院报, 2019, 36(3): 46-52. (WEI Qian-kun, LIU Shu-guang, ZHONG Gui-hui, et al. Influence of Channel Flood in Plain Tidal River Network on Waterlogging in Villages and Towns[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(3): 46-52.(in Chinese))
[3] 陈德汉, 胡伟贤. 珠三角潮感区排涝泵站规模选取[J]. 价值工程, 2015, 34(11): 225-226. (CHEN De-han, HU Wei-xian. Scale Designating of the Pump Station of Stagnant Water Drainage in Pearl River Delta Tidal Area[J]. Value Engineering,2015,34(11):225-226.(in Chinese))
[4] 窦汉林. 广州南沙区沙仔岛排涝泵站流量的确定[J]. 中国农村水利水电, 2006(9): 67-70. (DOU Han-lin. Determination of Discharge of Drainage Pumping Station in Shazaidao, Nansha District, Guangzhou[J]. China Rural Water and Hydropower, 2006(9): 67-70.(in Chinese))
[5] 海 燕, 王志涛. 八里河排涝站规模论证研究[J]. 治淮, 2022(5): 31-33. (HAI Yan, WANG Zhi-tao. Research on the Scale Demonstration of Balihe Drainage Station[J]. Harnessing the Huaihe River, 2022(5): 31-33.(in Chinese))
[6] 游 畅. 基于InfoWorks ICM模型确定排涝泵站规模[J]. 陕西水利, 2021(8): 73-75. (YOU Chang. Application of Infoworks ICM Model in Determining the Scale of Drainage Pumping Station[J]. Shaanxi Water Resources, 2021(8): 73-75.(in Chinese))
[7] 梁巧茵,张明凯,李帅杰.基于MIKE FLOOD的深圳市机场排涝泵站工程设计及运行模拟[J].水电能源科学,2021,39(3):86-90.(LIANG Qiao-yin,ZHANG Ming-kai,LI Shuai-jie.Design and Simulation of Drainage Pump Station of Shenzhen Airport Based on MIKE FLOOD[J]. Water Resources and Power,2021,39(3):86-90.(in Chinese))
[8] 黄进齐.温州卧旗排涝泵站规模拟定分析[J].陕西水利,2021(9):211-213.(HUANG Jin-qi. Analysis on the Scale of Wenzhou Woqi Drainage Pumping Station[J]. Shaanxi Water Resources, 2021(9): 211-213.(in Chinese))
[9] 曾台衡, 谢文俊, 曹国良. 平原河网地区城市排涝泵站设计流量分析方法研究[J]. 中国农村水利水电, 2021(9): 44-47. (ZENG Tai-heng, XIE Wen-jun, CAO Guo-liang. Research on the Design Flow Analysis Method of Urban Drainage Pumping Station in Plain River Network Areas[J]. China Rural Water and Hydropower, 2021(9): 44-47.(in Chinese))
[10] 李昂泽. 基于MIKE FLOOD模型的内涝风险评估及泵站规划方案优选[D]. 武汉: 华中科技大学, 2015. (LI Ang-ze. Waterlogging Risk Assessment and Application of the Pump Station Planning Optimization Based on MIKE FLOOD Model[D].Wuhan: Huazhong University of Science and Technology, 2015. (in Chinese))
[11] 陈 红,吴严君,闫 静.河工模型智能化测控设计及开发[J].长江科学院院报,2018,35(10):158-162.(CHEN Hong, WU Yan-jun, YAN Jing. Design and Development of Intelligent Control System for River Model[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(10): 158-162.(in Chinese))
[12] 夏云峰,杜德军,屈 波,等.大型潮汐河工模型试验控制系统设计及应用[J].水利水运工程学报,2018(1):1-8.(XIA Yun-feng, DU De-jun, QU Bo, et al. Design and Application of Control System for Large Tidal River Model Tests[J]. Hydro-Science and Engineering, 2018(1): 1-8.(in Chinese))
[13] 杜剑锋, 马志敏, 范北林. 河工模型试验目标水位突降时尾门水位的控制[J]. 长江科学院院报, 2016, 33(4): 131-134. (DU Jian-feng, MA Zhi-min, FAN Bei-lin. A Method of Controlling Water Level at Tail Gate when Target Water Level Drops Sharply in River Model Experiment[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(4): 131-134.(in Chinese))
[14] 刘曾美, 陈子燊, 李粤安. 感潮河段洪潮遭遇组合风险研究[J]. 中山大学学报(自然科学版), 2010, 49(2): 113-118. (LIU Zeng-mei, CHEN Zi-shen, LI Yue-an. Risk Probability Study on the Combination of Flood and Tide for Tide-affected River[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2010, 49(2): 113-118.(in Chinese))
[15] 黄锋华, 黄本胜, 郭 磊, 等. 东江干流与支流河涌洪水遭遇风险研究[J]. 中国农村水利水电, 2016(3): 144-148. (HUANG Feng-hua, HUANG Ben-sheng, GUO Lei, et al. Study on the Risk of Flood in the Main Stream and Tributaries of Dongjiang River[J]. China Rural Water and Hydropower, 2016(3): 144-148.(in Chinese))
PDF(1240 KB)

Accesses

Citation

Detail

Sections
Recommended

/