Experimental Study on Flow Rectification Characteristics of Rough Strip Energy Dissipator in Continuous Curved Spillway

MA Hao, MU Zhen-wei, FAN Fan, GU Yuan-hao

Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (3) : 71-78.

PDF(5834 KB)
PDF(5834 KB)
Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (3) : 71-78. DOI: 10.11988/ckyyb.20221318
Hydraulics

Experimental Study on Flow Rectification Characteristics of Rough Strip Energy Dissipator in Continuous Curved Spillway

  • MA Hao1,2, MU Zhen-wei1,2, FAN Fan3, GU Yuan-hao1,2
Author information +
History +

Abstract

The aim of this research is to investigate the factors affecting the diversion effect of rough strip energy dissipater on continuous curved spillway and its diversion characteristics. A physical model test was conducted using an orthogonal experimental design scheme involving nine factors and three levels. The ultra-high variation coefficient (Cv) is introduced to assess the diversion effect. Dimensional analysis and multiple regression analysis were performed to examine the factors impacting flow structure, and a multi-factor influence model for evaluating the diversion effect was established. The findings indicate that the angle and height of the rough strip significantly influence the flow structure in two bends, respectively, directly impacting the effectiveness of the rough strip in balancing water level differences and stabilizing flow patterns. By eliminating less influential common factors, the optimal diversion layout scheme for rough strip energy dissipator is determined. The maximum goodness of fit for various functional models is 0.822. The fitting equation is used to compare and validate the measured values, yielding a relative error of 2.78% to 7.15%. These research findings offer theoretical insights for analyzing and rectifying the flow in continuous curved spillways.

Key words

rough strip energy dissipator / continuous curved spillway / ultra-high variation coefficient / orthogonal design / multiple regression analysis

Cite this article

Download Citations
MA Hao, MU Zhen-wei, FAN Fan, GU Yuan-hao. Experimental Study on Flow Rectification Characteristics of Rough Strip Energy Dissipator in Continuous Curved Spillway[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(3): 71-78 https://doi.org/10.11988/ckyyb.20221318

References

[1] 周兴波,周建平,杜效鹄.美国奥罗维尔坝溢洪道事故分析与启示[J].水利学报,2019,50(5):650-660.(ZHOU Xing-bo,ZHOU Jian-ping,DU Xiao-hu.Lessons from the Oroville Dam Spillway Failure Analysis[J]. Journal of Hydraulic Engineering,2019,50(5):650-660.(in Chinese))
[2] 哈岸英,刘 磊.明渠弯道水流运动规律研究现状[J].水利学报,2011,42(12):1462-1469.(HA An-ying, LIU Lei. Research Situation of Water Flow in Bend Open Channel[J]. Journal of Hydraulic Engineering, 2011, 42(12): 1462-1469.(in Chinese))
[3] 樊 帆,牧振伟,张红红,等.溢洪道弯段糙条消能工消能率试验研究[J].长江科学院院报,2021,38(12):104-110.(FAN Fan,MU Zhen-wei,ZHANG Hong-hong,et al.Experimental Research on Energy Dissipation Rate of Rough Strip Energy Dissipator in Spillway Bend[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(12): 104-110.(in Chinese))
[4] 周 勤,伍 超,赵元弘,等.“S” 型溢洪道水流特性试验与数值模拟研究[J].水力发电学报,2005,24(3):78-82.(ZHOU Qin,WU Chao,ZHAO Yuan-hong,et al. Experiment and Numerical Simulation of Flow Characteristics in “S” style Spillway[J]. Journal of Hydroelectric Engineering, 2005, 24(3): 78-82.(in Chinese))
[5] 白玉川, 李 彬, 徐海珏, 等. 基岩弯曲河段洪水水流结构的试验研究[J]. 水科学进展, 2022, 33(1): 102-110.(BAI Yu-chuan, LI Bin, XU Hai-jue, et al. Hydrodynamic of Flood in Bedrock Bend Reach: Laboratory Experiment[J]. Advances in Water Science, 2022, 33(1): 102-110.(in Chinese))
[6] 柴文伟. 桥墩影响下的双弯道水流泥沙运动三维数值模拟研究[D]. 宜昌: 三峡大学, 2021.(CHAI Wen-wei. Three-dimensional Numerical Simulation of Flow and Sediment Movement in Double Curved Channel under the Influence of Piers[D]. Yichang: China Three Gorges University, 2021.(in Chinese))
[7] OTTEVANGER W, BLANCKAERT K, UIJTTEWAAL W S J. Processes Governing the Flow Redistribution in Sharp River Bends[J]. Geomorphology, 2012, 163/164: 45-55.
[8] 罗平安, 李 觅. 连续微弯弯道水力特性试验及模拟研究[J]. 长江科学院院报, 2019, 36(1): 55-59.(LUO Ping-an, LI Mi. Hydraulic Characteristics of Continuous Micro-bend Channel: Flume Experiment and Numerical Simulation[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(1): 55-59.(in Chinese))
[9] GHAZANFARI-HASHEMI R S,MONTAZERI NAMIN M,GHAEINI-HESSAROEYEH M,et al. A Numerical Study on Three-dimensionality and Turbulence in Supercritical Bend Flow[J]. International Journal of Civil Engineering, 2020, 18(3): 381-391.
[10] BLANCKAERT K, DE VRIEND H J. Turbulence Characteristics in Sharp Open-channel Bends[J]. Physics of Fluids, 2005, 17(5):1-15.
[11] MAATOOQ J S,HAMEED L K.2D Model to Investigate the Morphological and Hydraulic Changes of Meanders[J].Engineering and Technology Journal,2020,38(1):9-19.
[12] 陈启刚, 钟 强, 李丹勋, 等. 明渠弯道水流平均运动规律试验研究[J]. 水科学进展, 2012, 23(3): 369-375.(CHEN Qi-gang, ZHONG Qiang, LI Dan-xun, et al. Experimental Study of Open Channel Flow in a Bend[J]. Advances in Water Science, 2012, 23(3): 369-375.(in Chinese))
[13] 贾萍阳,牧振伟,李凡琦,等.糙条应用于弯段溢洪道内水力特性试验研究[J].水电能源科学,2020,38(2):118-121.(JIA Ping-yang,MU Zhen-wei,LI Fan-qi,et al. Hydraulic Characteristic Study about Roughness Strip in Applied to Curved Spillway[J]. Water Resources and Power,2020,38(2):118-121.(in Chinese))
[14] 张红红, 牧振伟, 李凡琦, 等. 糙条消能工对弯道水流动能调整试验研究[J]. 水资源与水工程学报, 2020, 31(3): 162-168.(ZHANG Hong-hong, MU Zhen-wei, LI Fan-qi, et al. Experimental Study on the Flow Energy Adjustment with Rough Strip Energy Dissipators in a Curved Channel[J]. Journal of Water Resources and Water Engineering, 2020, 31(3): 162-168.(in Chinese))
[15] 张 靖,滕晓敏,张庆华.透水斜槛参数对溢洪道弯道水流改善效果的影响[J].水利水电科技进展,2022,42(3):25-31.(ZHANG Jing,TENG Xiao-min,ZHANG Qing-hua.Impact of Permeable Oblique Sill Parameters on Bend Flow Improvement Effect in a Spillway[J]. Advances in Science and Technology of Water Resources,2022,42(3):25-31.(in Chinese))
[16] 李凡琦, 牧振伟, 孙德旭, 等. 基于正交设计的糙条消能工评价方法[J]. 排灌机械工程学报, 2020, 38(5): 481-487.(LI Fan-qi, MU Zhen-wei, SUN De-xu, et al. Orthogonal Design of Experiment-based Evaluation Method for Rough-strip Energy Dissipators[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(5): 481-487.(in Chinese))
[17] 吴华莉, 陈翠霞, 金中武, 等. 基于Fluent的连续弯道水流三维数值模拟[J]. 武汉大学学报(工学版), 2013, 46(5): 599-603.(WU Hua-li, CHEN Cui-xia, JIN Zhong-wu, et al. Three-dimensional Numerical Simulation of Flow in Successive Bends Based on Fluent[J]. Engineering Journal of Wuhan University, 2013, 46(5): 599-603.(in Chinese))
[18] 曹玉芬,白玉川,高术仙.连续弯道水槽水流结构与床面形态试验研究[J].天津大学学报(自然科学与工程技术版),2020,53(12):1226-1235.(CAO Yu-fen,BAI Yu-chuan,GAO Shu-xian.Experimental Study of Flow Structure and Bed Topography in Continuous Curve Flume[J]. Journal of Tianjin University (Science and Technology),2020,53(12):1226-1235.(in Chinese))
[19] 许光祥, 童思陈, 钟 亮. 弯道水面横比降沿程分布特性研究[J]. 水力发电学报, 2009, 28(4): 114-118.(XU Guang-xiang, TONG Si-chen, ZHONG Liang. Study on the Longitudinal Distribution of Water Surface Transverse Slope in Curved Conduits[J]. Journal of Hydroelectric Engineering, 2009, 28(4): 114-118.(in Chinese))
PDF(5834 KB)

Accesses

Citation

Detail

Sections
Recommended

/