Application of Kriging-based Hydrodynamic Surrogate Model for Optimal Scheduling of Cascade Reservoirs

XU Yang, LÜ Hao, LIU Shuai, FANG Wei, QIN Hui

Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (2) : 7-13.

PDF(1301 KB)
PDF(1301 KB)
Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (2) : 7-13. DOI: 10.11988/ckyyb.20221303
Comprehensive Management Of River Basin

Application of Kriging-based Hydrodynamic Surrogate Model for Optimal Scheduling of Cascade Reservoirs

  • XU Yang1, LÜ Hao2, LIU Shuai3,4, FANG Wei3,4, QIN Hui3,4
Author information +
History +

Abstract

To address the time-consuming nature of traditional hydrodynamic model combined with scheduling model, we propose a surrogate model as an approximation to enhance efficiency. The research focuses on the practical scheduling of cascade reservoirs from lower Jinsha River to the Three Gorges. By combining hydrodynamics theory with the Kriging surrogate model, we established a multi-objective dispatching model for a multi-reservoir system, and subsequently solved the model using a multi-objective evolutionary algorithm. Ultimately, we identified the multi-objective Pareto front of the model by adopting the projection pursuit method in decision-making. Research findings demonstrate that the surrogate model exhibits an average simulation error of less than 1.5%, effectively replacing the time-consuming hydrodynamic model while generating a competitive Pareto front and providing reasonable compromise solutions. These outcomes lay a theoretical foundation for advancing the comprehensive benefits of cascade reservoirs.

Key words

multi-objective optimal operation / Kriging model / hydrodynamic model / projection pursuit / cascade reservoirs

Cite this article

Download Citations
XU Yang, LÜ Hao, LIU Shuai, FANG Wei, QIN Hui. Application of Kriging-based Hydrodynamic Surrogate Model for Optimal Scheduling of Cascade Reservoirs[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(2): 7-13 https://doi.org/10.11988/ckyyb.20221303

References

[1] 何绍坤, 郭生练, 刘 攀, 等. 金沙江梯级与三峡水库群联合蓄水优化调度[J]. 水力发电学报, 2019, 38(8): 27-36.(HE Shao-kun, GUO Sheng-lian, LIU Pan,et al. Joint and Optimal Impoundment Operation of Jinsha River’s Cascade Reservoirs and Three Gorges Reservoir[J]. Journal of Hydroelectric Engineering, 2019, 38(8): 27-36.(in Chinese))
[2] 龚文婷, 胡 挺, 邢 龙, 等. 金沙江下游四库蓄水调度影响与对策分析[J]. 水电能源科学, 2022, 40(4): 83-86.(GONG Wen-ting, HU Ting, XING Long,et al. Research on Influence and Countermeasures of Water Impoundment Operation of Four Reservoirs in Lower Reaches of the Jinsha River[J]. Water Resources and Power, 2022, 40(4): 83-86.(in Chinese))
[3] 王 浩,王 旭,雷晓辉,等.梯级水库群联合调度关键技术发展历程与展望[J].水利学报,2019,50(1):25-37.(WANG Hao,WANG Xu,LEI Xiao-hui,et al.The Development and Prospect of Key Techniques in the Cascade Reservoir Operation[J]. Journal of Hydraulic Engineering,2019,50(1):25-37.(in Chinese))
[4] 仲志余, 邹 强, 王学敏, 等. 长江上游梯级水库群多目标联合调度技术研究[J]. 人民长江, 2022, 53(2): 12-20.(ZHONG Zhi-yu, ZOU Qiang, WANG Xue-min,et al. Study on Multi-objective Joint Operation Technology of Cascade Reservoirs in Upper Reaches of Changjiang River[J]. Yangtze River, 2022, 53(2): 12-20.(in Chinese))
[5] 张海荣, 姚华明, 鲍正风, 等. 雅砻江和金沙江中下游梯级水库联合优化调度建模及应用Ⅰ: 联合优化调度潜力分析[J]. 长江科学院院报, 2022, 39(9): 30-37.(ZHANG Hai-rong, YAO Hua-ming, BAO Zheng-feng,et al. Modeling and Application of Joint Optimal Scheduling of Cascade Reservoirs on Yalong River and the Middle and Downstream of Jinsha River. I: Potential Analysis[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(9): 30-37.(in Chinese))
[6] 郭文献,夏自强,王远坤,等.三峡水库生态调度目标研究[J].水科学进展,2009,20(4):554-559.(GUO Wen-xian,XIA Zi-qiang,WANG Yuan-kun,et al. Ecological Operation Goals for Three Gorges Reservoir[J]. Advances in Water Science, 2009, 20(4): 554-559.(in Chinese))
[7] 谢 伟. 基于代理模型的梯级水库多目标精细化调度研究[D]. 武汉: 华中科技大学, 2021.(XIE Wei. Study on Multi-objective Refined Operation of Cascade Reservoir Based on Surrogate Model[D]. Wuhan: Huazhong University of Science and Technology, 2021. (in Chinese))
[8] 张 雯, 李 京, 陈云浩. 面向城市内涝消减的蓄水池尺寸优化模拟[J]. 北京师范大学学报(自然科学版), 2018, 54(6): 745-754.(ZHANG Wen, LI Jing, CHEN Yun-hao. Detention Tanks Size Optimization for Urban Flood Mitigation[J]. Journal of Beijing Normal University (Natural Science), 2018, 54(6): 745-754.(in Chinese))
[9] 安永凯, 卢文喜, 董海彪, 等. 基于克里格法的地下水流数值模拟模型的替代模型研究[J]. 中国环境科学, 2014, 34(4): 1073-1079.(AN Yong-kai, LU Wen-xi, DONG Hai-biao,et al. Surrogate Model of Numerical Simulation Model of Groundwater Based on Kriging[J]. China Environmental Science, 2014, 34(4): 1073-1079.(in Chinese))
[10]杨瑞刚, 高 林, 董 青, 等. 基于Kriging模型与NSGA-Ⅱ算法的堆垛机结构优化设计[J]. 机械设计与制造, 2022(5): 298-304.(YANG Rui-gang, GAO Lin, DONG Qing,et al. Optimization of Stacker Structure Based on Kriging Model and NSGA-Ⅱ Algorithm[J]. Machinery Design & Manufacture, 2022(5): 298-304.(in Chinese))
[11]杨永利,陈 月.基于协同克里金模型的区域降水空间插值方法与应用研究[J].水利技术监督,2016,24(4):104-107.(YANG Yong-li,CHEN Yue.Research on Spatial Interpolation Method and Application of Regional Precipitation Based on Collaborative Kriging Model[J]. Technical Supervision in Water Resources,2016,24(4):104-107.(in Chinese))
[12]韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225.(HAN Zhong-hua. Kriging Surrogate Model and Its Application to Design Optimization: A Review of Recent Progress[J]. Acta Aeronautica et Astronautica Sinica,2016,37(11):3197-3225.(in Chinese))
[13]任 杰,董增川,徐 伟,等.基于MIKE21 FM模型的河道防浪林行洪影响分析[J].河海大学学报(自然科学版),2019,47(5):420-424.(REN Jie,DONG Zeng-chuan,XU Wei,et al.Study on Influence of River Wavebreak Forest on Flood Discharge Ability Based on MIKE21 FM Model[J]. Journal of Hohai University (Natural Sciences),2019,47(5):420-424.(in Chinese))
[14]郭凤清, 屈寒飞, 曾 辉, 等. 基于MIKE21 FM模型的蓄洪区洪水演进数值模拟[J]. 水电能源科学, 2013, 31(5): 34-37.(GUO Feng-qing, QU Han-fei, ZENG Hui,et al. Flood Routing Numerical Simulation of Flood Storage Area Based on MIKE21 FM Model[J]. Water Resources and Power, 2013, 31(5): 34-37.(in Chinese))
[15]马皓宇. 雅砻江中下游梯级水库多目标精细优化调度及决策方法研究[D]. 北京: 华北电力大学, 2021.(MA Hao-yu. Research on Multi-objective Detailed Optimal Operation and Decision-Making Methods for Cascade Reservoirs in the Middle and Lower Reaches of Yalong River[D]. Beijing: North China Electric Power University, 2021. (in Chinese))
[16]牛文静, 冯仲恺, 程春田, 等. 梯级水电站群并行多目标优化调度方法[J]. 水利学报, 2017, 48(1): 104-112. (NIU Wen-jing, FENG Zhong-kai, CHENG Chun-tian,et al. Parallel Multi-objective Optimal Operation of Cascaded Hydropower System[J]. Journal of Hydraulic Engineering, 2017, 48(1): 104-112.(in Chinese))
[17]呼子宇, 李紫晗, 孙 浩, 等. 基于决策变量关系的动态多目标优化算法[J]. 控制与决策, 2022: 1-9.(HU Zi-yu, LI Zi-han, SUN Hao, et al. A Dynamic Multi-objective Optimization Algorithm Based on the Relationship of Decision Variables[J]. Control and Decision, 2024,39(1): 78-86. (in Chinese))
[18]DEB K, PRATAP A, AGARWAL S, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[19]DEB K. An Efficient Constraint Handling Method for Genetic Algorithms[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2/3/4): 311-338.
[20]李 杰. 面向生态、航运、发电的流域水库群多目标联合调度研究[D]. 武汉: 华中科技大学, 2020.(LI Jie. Study on Multi-objective Joint Operation of Reservoir Groups for Ecology, Navigation and Hydropower Generation[D]. Wuhan: Huazhong University of Science and Technology, 2020. (in Chinese))
[21]俞立雄. 长江中游四大家鱼典型产卵场地形及水动力特征研究[D]. 重庆: 西南大学, 2018.(YU Li-xiong. Study on the Topography and Hydrodynamic Characteristics of the Four Major Chinese Carps’ Typical Spawning Grounds in the Middle Reaches of the Yangtze River[D]. Chongqing: Southwest University, 2018. (in Chinese))
[22]刘明典,高 雷,田辉伍,等.长江中游宜昌江段鱼类早期资源现状[J].中国水产科学,2018,25(1):147-158.(LIU Ming-dian, GAO Lei, TIAN Hui-wu,et al. Status of Fishes at the Early Life History Stage in the Yichang Section in the Middle Reaches of the Yangtze River[J]. Journal of Fishery Sciences of China, 2018, 25(1): 147-158.(in Chinese))
[23]董增川,倪效宽,陈牧风,等.流域水资源调度多目标时变偏好决策方法及应用[J].水科学进展,2021,32(3):376-386.(DONG Zeng-chuan,NI Xiao-kuan,CHEN Mu-feng,et al. Multi-objective Time-varying Preference Decision-making Method for Basin Water Resource Dispatch and Its Application[J]. Advances in Water Science, 2021, 32(3): 376-386.(in Chinese))
[24]ZHANG L, LI H. Construction Risk Assessment of Deep Foundation Pit Projects Based on the Projection Pursuit Method and Improved Set Pair Analysis[J]. Applied Sciences, 2022, 12(4), Doi: 10.3390/app12041922.
[25]刘 奇. 浙江省特色小镇高质量发展综合评价及空间效应研究[D]. 杭州: 杭州电子科技大学, 2021.(LIU Qi. Research on Comprehensive Evaluation and Spatial Effects of High-Quality Development of Characteristic Towns in Zhejiang Province[D]. Hangzhou: Hangzhou Dianzi University, 2021. (in Chinese))
PDF(1301 KB)

Accesses

Citation

Detail

Sections
Recommended

/