Future Rainfall Change Trend in Yangtze River Basin Based on CanESM5 Model

OUYANG Shuo, HU Zhi-dan, SHAO Jun, GONG Li, DU Tao

Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (1) : 36-43.

PDF(7056 KB)
PDF(7056 KB)
Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (1) : 36-43. DOI: 10.11988/ckyyb.20221144
Water Resources

Future Rainfall Change Trend in Yangtze River Basin Based on CanESM5 Model

  • OUYANG Shuo1, HU Zhi-dan2, SHAO Jun1, GONG Li3, DU Tao1
Author information +
History +

Abstract

Situated in the eastern monsoon region of China, Yangtze River Basin is highly vulnerable to the impacts of climate change and prone to be stricken by frequent and severe flood and drought disasters. It is crucial to analyze the future spatiotemporal trends of hydrological and meteorological elements in the Yangtze River Basin. Based on the precipitation prediction results of the CanESM5 model released by CMIP6 under low, medium, and high forcing scenarios, namely SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively, we employed the daily bias correction method to examine the spatiotemporal evolution of precipitation over the next four decades. In spatial scale, the annual average precipitation across the Yangtze River Basin remains a pattern of increasing from northwest to southeast; and in temporal scale, future precipitation trends in the upstream basins of Pingshan and Yichang, which are key control stations, exhibit significantly higher mean and extreme values over the next four decades than those in historical period. In particular, precipitation levels in the SSP5-8.5 scenario are notably higher than those observed in the SSP1-2.6 and SSP2-4.5 scenarios. Moreover, we observed a significant linear correlation between annual precipitation and time in the upstream of Pingshan section under the SSP1-2.6 and SSP5-8.5 scenarios, but no significant correlation for the Yichang section. However, under the SSP2-4.5 scenario, the correlation between annual precipitation and time in the upstream of both sections remains significant.

Key words

spatiotemporal evolution trend of precipitation / CMIP6 / CanESM5 model / quantile-based daily bias correction / Yangtze River Basin

Cite this article

Download Citations
OUYANG Shuo, HU Zhi-dan, SHAO Jun, GONG Li, DU Tao. Future Rainfall Change Trend in Yangtze River Basin Based on CanESM5 Model[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(1): 36-43 https://doi.org/10.11988/ckyyb.20221144

References

[1] IPCC. Climate Change 2021: The Physical Science Basis: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2021.
[2] 中国气象局气候变化中心.中国气候变化蓝皮书(2021)[M]. 北京:科学出版社,2021. (Climate Change Center of China Meteorological Administration. Blue Book of Climate Change in China 2021[M]. Beijing: Science Press, 2021. (in Chinese))
[3] 李峰平, 章光新, 董李勤. 气候变化对水循环与水资源的影响研究综述[J]. 地理科学,2013,33(4):457-464. (LI Feng-ping, ZHANG Guang-xin, DONG Li-qin. Studies for Impact of Climate Change on Hydrology and Water Resources[J]. Scientia Geographica Sinica, 2013, 33(4): 457-464.(in Chinese))
[4] 张利平, 杜 鸿, 夏 军, 等. 气候变化下极端水文事件的研究进展[J]. 地理科学进展, 2011, 30(11): 1370-1379. (ZHANG Li-ping, DU Hong, XIA Jun, et al. Progress in the Study of Extreme Hydrologic Events under Climate Change[J]. Progress in Geography, 2011, 30(11): 1370-1379.(in Chinese))
[5] 丁一汇. 中国气候变化科学概论[M]. 北京: 气象出版社, 2008. (DING Yi-hui. Introduction to Climate Change Science in China[M]. Beijing: China Meteorological Press, 2008.(in Chinese))
[6] 张丽霞, 陈晓龙, 辛晓歌. CMIP6情景模式比较计划(ScenarioMIP)概况与评述[J]. 气候变化研究进展, 2019, 15(5): 519-525. (ZHANG Li-xia, CHEN Xiao-long, XIN Xiao-ge. Short Commentary on CMIP6 Scenario Model Intercomparison Project (ScenarioMIP)[J]. Climate Change Research, 2019, 15(5): 519-525.(in Chinese))
[7] 周天军,邹立维,陈晓龙.第六次国际耦合模式比较计划(CMIP6)评述[J].气候变化研究进展,2019,15(5):445-456.(ZHOU Tian-jun, ZOU Li-wei, CHEN Xiao-long. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6)[J]. Climate Change Research, 2019, 15(5): 445-456.(in Chinese))
[8] 胡 芩,姜大膀,范广洲.CMIP5全球气候模式对青藏高原地区气候模拟能力评估[J].大气科学,2014,38(5):924-938.(HU Qin, JIANG Da-bang, FAN Guang-zhou. Evaluation of CMIP5 Models over the Qinghai–Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(5): 924-938.(in Chinese))
[9] 初 祁, 徐宗学, 刘文丰, 等. 24个CMIP5模式对长江流域模拟能力评估[J]. 长江流域资源与环境, 2015, 24(1): 81-89. (CHU Qi, XU Zong-xue, LIU Wen-feng, et al. Assessment on 24 Global Climate Models in the CMIP5 over the Yangtze River[J]. Resources and Environment in the Yangtze Basin, 2015, 24(1): 81-89.(in Chinese))
[10] 周文翀, 韩振宇. CMIP5全球气候模式对中国黄河流域气候模拟能力的评估[J]. 气象与环境学报, 2018, 34(6): 42-55. (ZHOU Wen-chong, HAN Zhen-yu. Assessing CMIP5 Climate Simulations and Objective Selection of Models over the Yellow River Basin[J]. Journal of Meteorology and Environment, 2018, 34(6): 42-55.(in Chinese))
[11] 田孟勤, 张 杰, 罗 阳, 等. CMIP5气候模式对云南气候变化模拟评估及未来情景预估[J]. 中低纬山地气象, 2019, 43(6): 24-29. (TIAN Meng-qin, ZHANG Jie, LUO Yang, et al. Evaluation and Estimation of Climate Change in Yunnan Province on CMIP5 Modeling[J]. Mid-Low Latitude Mountain Meteorology, 2019, 43(6): 24-29.(in Chinese))
[12] 王 杰.气候变化条件下黑河上游径流模拟及预测[D]. 北京:中国地质大学(北京),2019.(WANG Jie. Simulation and Prediction of Runoff in the Upstream of Heihe River under Climate Change[D]. Beijing: China University of Geosciences, 2019. (in Chinese))
[13] YANG X,ZHOU B, XU Y,et al.CMIP6 Evaluation and Projection of Temperature and Precipitation over China[J]. Advances in Atmospheric Sciences,2021,38(5):817-830.
[14] 王 予, 李惠心, 王会军, 等. CMIP6全球气候模式对中国极端降水模拟能力的评估及其与CMIP5的比较[J]. 气象学报, 2021, 79(3): 369-386. (WANG Yu, LI Hui-xin, WANG Hui-jun, et al. Evaluation of CMIP6 Model Simulations of Extreme Precipitation in China and Comparison with CMIP5[J]. Acta Meteorologica Sinica, 2021, 79(3): 369-386.(in Chinese))
[15] 孙占东, 黄 群, 姜加虎, 等. 经验正交函数方法和TRMM数据对长江流域降水模式与极端水文过程的研究[J]. 长江流域资源与环境, 2012, 21(3): 321-326. (SUN Zhan-dong, HUANG Qun, JIANG Jia-hu, et al. Empirical Orthogonal Function(EOF) and Its Application in Precipitation Patterns Recognition and Hydrological Extreme Studies Using TRMM Data in the Yangtze River Basin[J]. Resources and Environment in the Yangtze Basin, 2012, 21(3): 321-326.(in Chinese))
[16] 潘 欣, 尹义星, 王小军. 1960—2010年长江流域极端降水的时空演变及未来趋势[J]. 长江流域资源与环境, 2017, 26(3): 436-444. (PAN Xin, YIN Yi-xing, WANG Xiao-jun. Spatio-temporal Characteristics and Future Trend of Extreme Precipitation in the Yangtze River Basin during 1960 to 2010[J]. Resources and Environment in the Yangtze Basin, 2017, 26(3): 436-444.(in Chinese))
[17] CHEN Z, ZENG Y, SHEN G, et al. Spatiotemporal Characteristics and Estimates of Extreme Precipitation in the Yangtze River Basin Using GLDAS Data[J]. International Journal of Climatology, 2020, 41: E1812-E1830.
[18] 夏 军, 刘春蓁, 刘志雨, 等. 气候变化对中国东部季风区水循环及水资源影响与适应对策[J]. 自然杂志, 2016, 38(3): 167-176. (XIA Jun, LIU Chun-zhen, LIU Zhi-yu, et al. Impact of Climate Change and Adaptive Strategy on Terrestrial Water Cycle and Water Resources in East Monsoon Area of China[J]. Chinese Journal of Nature, 2016, 38(3): 167-176.(in Chinese))
[19] 刘志雨, 夏 军. 气候变化对中国洪涝灾害风险的影响[J]. 自然杂志, 2016, 38(3): 177-181. (LIU Zhi-yu, XIA Jun. Impact of Climate Change on Flood Disaster Risk in China[J]. Chinese Journal of Nature, 2016, 38(3): 177-181.(in Chinese))
[20] 韩会庆, 苏志华, 张娇艳, 等. 1960—2013年贵州省强降水天数时空变化特征[J]. 长江科学院院报, 2017, 34(11): 1-5. (HAN Hui-qing, SU Zhi-hua, ZHANG Jiao-yan, et al. Spatial and Temporal Variations of Heavy Precipitation Days from 1960 to 2013 in Guizhou Province[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(11): 1-5.(in Chinese))
[21] 唐 见, 陈 进, 周建中. 长江上游保护区径流变化特征及其对气候因子响应的区域差异性研究[J]. 长江科学院院报, 2015, 32(6): 110-115. (TANG Jian, CHEN Jin, ZHOU Jian-zhong. Runoff Changes and Its Regional Differences in Response to Climate Factors in Reserve Zone of the Yangtze River Upstream Area[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(6): 110-115.(in Chinese))
[22] CHEN J, BRISSETTE F P, LECONTE R. Uncertainty of Downscaling Method in Quantifying the Impact of Climate Change on Hydrology[J]. Journal of Hydrology, 2011, 401(3/4): 190-202.
[23] CHEN J, BRISSETTE F P, CHAUMONT D, et al. Performance and Uncertainty Evaluation of Empirical Downscaling Methods in Quantifying the Climate Change Impacts on Hydrology over Two North American River Basins[J]. Journal of Hydrology, 2013, 479: 200-214.
[24] 何坤龙, 刘晓辉, 刘 蛟, 等. 不同偏差校正方法对青藏高原地区GPM的应用效果研究[J]. 山地学报, 2021, 39(3): 439-449. (HE Kun-long, LIU Xiao-hui, LIU Jiao, et al. Performances of Different Deviation Calibration Methods on GPM in the Qinghai-Tibet Plateau, China[J]. Mountain Research, 2021, 39(3): 439-449.(in Chinese))
PDF(7056 KB)

Accesses

Citation

Detail

Sections
Recommended

/