Embankment Breach Due to Overflowing: Mechanism, Models, Flood Simulation Technologies, and Their Applications

Yong-hui ZHU, Jian-yin ZHOU

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (5) : 1-8.

PDF(6836 KB)
PDF(6836 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (5) : 1-8. DOI: 10.11988/ckyyb.20220979
Special Contribution

Embankment Breach Due to Overflowing: Mechanism, Models, Flood Simulation Technologies, and Their Applications

Author information +
History +

Abstract

Over the years, researchers in the River Research Department of the Changjiang River Scientific Research Institute has conducted extensive studies on the mechanism, models, and simulation technologies of embankment breaches due to overflowing. These efforts were aimed at enhancing the ability to respond to embankment breach emergencies and to defend associated disasters. Through the use of physical model tests, flume tests, theoretical analysis, numerical simulation, and other methods, the department has made significant contributions to the field. Specifically, we have uncovered the mechanism of embankment breaches due to overflowing, analyzed the role of “headcut erosion” in the breaching process, and introduced patterns of headcut erosion and phases of embankment breaching due to overflowing. Additionally, we have developed a two-dimensional mathematical model of headcut erosion and a mathematical model of embankment breaching based on the physical mechanism. Furthermore, we have created one-, two-, and three-dimensional flood simulation technologies that are adapted to the characteristics of dam-breaking flow, along with a terrain processing method, and have preliminarily explored the three-dimensional flow field and hydrodynamic pressure characteristics of dam-breaking flow. Last, we made a review on the research progress in related fields and the achievements published in scientific journals. The accomplishments of the department have already proven to be highly effective in emergency response and decision-making, specifically during the Tangjiashan and Baige barrier lake breach emergencies. These achievements provide technical reference and experience for addressing embankment breach (including barrier lake burst) dangers in the future.

Key words

embankment / barrier lake / embankment breaching mechanism / flood evolution / emergency response

Cite this article

Download Citations
ZHU Yong-hui , ZHOU Jian-yin. Embankment Breach Due to Overflowing: Mechanism, Models, Flood Simulation Technologies, and Their Applications[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(5): 1-8 https://doi.org/10.11988/ckyyb.20220979

References

[1]
VISSER P J. Breach Growth in Sand-dikes[D]. Delft: Delft University of Technology, 1998.
[2]
MORRIS M W, HASSAN M A A M, VASKINN K A. Breach Formation: Field Test and Laboratory Experiments[J]. Journal of Hydraulic Research, 2007, 45(Sup1):9-17.
[3]
张建云, 李云, 宣国祥, 等. 不同粘性均质土坝漫顶溃决实体试验研究[J]. 中国科学(E辑: 技术科学), 2009, 39(11): 1881-1886.
[4]
YANG Y, CAO S Y, YANG K J, et al. Experimental Study of Breach Process of Landslide Dams by Overtopping and Its Initiation Mechanisms[J]. Journal of Hydrodynamics, Series B, 2015, 27(6): 872-883.
[5]
JIANG X, WEI Y, WU L, et al. Experimental Investigation of Failure Modes and Breaching Characteristics of Natural Dams[J]. Geomatics, Natural Hazards and Risk, 2018, 9(1): 33-48.
[6]
WAHL T L. Uncertainty of Predictions of Embankment Dam Breach Parameters[J]. Journal of Hydraulic Engineering, 2004, 130(5): 389-397.
[7]
HANSON G J, TEMPLE D M, HUNT S L, et al. Development and Characterization of Soil Material Parameters for Embankment Breach[J]. Applied Engineering in Agriculture, 2011, 27(4): 587-595.
[8]
ASHRAF M, SOLIMAN A H, EL-GHORAB E, et al. Assessment of Embankment Dams Breaching Using Large Scale Physical Modeling and Statistical Methods[J]. Water Science, 2018, 32(2): 362-379.
[9]
COLEMAN S E, ANDREWS D P, WEBBY M G. Overtopping Breaching of Noncohesive Homogeneous Embankments[J]. Journal of Hydraulic Engineering, 2002, 128(9): 829-838.
[10]
黄金池. 堰塞坝漫顶溃口流量变化过程的数值模拟[J]. 水利学报, 2008, 39(10): 1235-1240.
[11]
WU W. Simplified Physically Based Model of Earthen Embankment Breaching[J]. Journal of Hydraulic Engineering, 2013, 139(8): 837-851.
[12]
钟启明, 陈生水, 邓曌. 堰塞坝漫顶溃决机理与溃坝过程模拟[J]. 中国科学: 技术科学, 2018, 48(9): 959-968.
[13]
陈祖煜, 陈生水, 王琳, 等. 金沙江上游“11·3”白格堰塞湖溃决洪水反演分析[J]. 中国科学: 技术科学, 2020, 50(6): 763-774.
[14]
SINGH V P. Dam Breach Modeling Technology[M]. Dordrecht: Kluwer Academic Publishers, 1996.
[15]
WU W M, ALTINAKAR M S, AL-RIFFAI M, et al. Earthen Embankment Breaching[J]. Journal of Hydraulic Engineering, 2011, 137(12): 1549-1564.
[16]
王光谦, 王永强, 刘磊, 等. 堰塞坝及其溃决模拟研究评述[J]. 人民黄河, 2015, 37(9): 1-7.
[17]
朱勇辉, 廖鸿志, 吴中如. 土坝溃决模型及其发展[J]. 水力发电学报, 2003, 22(2): 31-38.
[18]
谢亚军, 朱勇辉, 国小龙. 土坝溃决研究进展及存在问题[J]. 长江科学院院报, 2013, 30(4): 29-33.
[19]
国小龙, 朱勇辉, 范北林, 等. “陡坎”冲刷模拟研究与进展[J]. 水力发电学报, 2014, 33(1): 73-78.
[20]
周建银, 姚仕明, 王敏, 等. 土石坝漫顶溃决及洪水演进研究进展[J]. 水科学进展, 2020, 31(2): 287-301.
[21]
张昕健, 渠庚, 范北林, 等. 溃堤洪水与堤后冲刷研究综述及展望[J]. 长江科学院院报, 2019, 36(4): 9-12, 38.
[22]
朱勇辉, 范北林, 卢金友, 等. 唐家山堰塞湖溃坝洪水分析及泄流冲刷模拟[J]. 人民长江, 2008, 39(22): 79-82.
[23]
张细兵, 卢金友, 范北林, 等. 唐家山堰塞湖溃坝洪水演进及下泄过程复演[J]. 人民长江, 2008, 39(22): 76-78.
[24]
朱勇辉, 张细兵, 渠庚. 唐家山堰塞湖溃坝洪水计算及湖水下泄复演验证报告[R]. 武汉: 长江水利委员会长江科学院, 2008.
[25]
王敏, 卢金友, 姚仕明, 等. 金沙江白格堰塞湖溃决洪水预报误差与改进[J]. 人民长江, 2019, 50(3): 34-39.
[26]
ZHU Y, CHEN D, ZHOU J, et al. The Baige Barrier Lake in the Upper Changjiang River and Its Dambreach Flood Simulation[C]//Proceedings of the 38th IAHR World Congress “Water: Connecting the World”. The International Association for Hydro-environment Engineering and Research (IAHR). Panama City, September 1-6, 2019: 2306-2311.
[27]
ZHU Y. Breach Growth in Clay-dikes[D]. Delft: Delft University of Technology, 2006.
[28]
ZHU Y, VISSER P J, VRIJLING J K, et al. Experimental Investigation on Breaching of Embankments[J]. Science China Technological Sciences, 2011, 54(1): 148-155.
[29]
ZHU Y, XIE Y, ZHAO G, et al. Experimental Observations of Headcut Erosion During Embankment Breaching[C]//Proceedings of the 2013 IAHR World Congress. Chengdu, China. September 8-13, 2013: 1-12.
[30]
朱勇辉, 谢亚军, 国小龙. 均质土石坝漫溃过程中“陡坎”冲刷机理与模拟研究[R]. 武汉: 长江科学院, 2014.
[31]
朱勇辉. 均质堤坝漫溃过程模拟研究[R]. 北京: 清华大学, 2011.
[32]
周建银, 王敏, 赵瑾琼, 等. 一种河道断面地形重构方法: CN111735430B[P]. 2021-11-26.
[33]
杨小亭. 二维溃坝水波MAC方法数值模拟[J]. 武汉水利电力大学学报, 1997(2): 54-58.
[34]
STANSBY P K, CHEGINI A, BARNES T C D. TheInitial Stages of Dam-Break Flow[J]. Journal of Fluid Mechanics, 1998, 374: 407-424.
[35]
QUECEDO M, PASTOR M, HERREROS M I, et al. Comparison of Two Mathematical Models for Solving the Dam Break Problem Using the FEM Method[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(36/37/38): 3984-4005.
[36]
ZIMA P. Two-dimensional Vertical Analysis of Dam-break Flow[J]. Task Quarterly, 2007, 11(4): 315-328.
[37]
HU D, ZHU Y, ZHANG H. Discussion of “Three-dimensional Numerical Modeling of Dam-break Flows with Sediment Transport over Movable Beds” by Reza Marsooli and Weiming Wu[J]. Journal of Hydraulic Engineering, 2016, 142(1), Doi: 10.1061/(ASCE)HY.1943-7900.0001086.
[38]
ZHU Y, HU D. Vertical 2D Nonhydrostatic Model Using Mode Splitting for Dam-break Flows[J]. Journal of Hydraulic Engineering, 2018, 144(6), Doi: 10.1061/(ASCE)HY.1943-7900.0001478.
[39]
胡德超. 溃坝水流与河床相互作用的三维数值模拟研究[R]. 北京: 清华大学, 2011.
[40]
周建银, 朱勇辉, 陈栋, 等. 2018年金沙江白格、雅鲁藏布江加拉堰塞湖溃决及洪水演进计算分析报告[R]. 武汉: 长江水利委员会长江科学院, 2021.
PDF(6836 KB)

Accesses

Citation

Detail

Sections
Recommended

/