Research Review of Scaled Physical Model Test of Water Inrush Disaster in Tunnel

ZHU Jie-bing, LÜ Si-qing, WANG Bin, ZHU Yong-suo

Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (1) : 98-106.

PDF(7972 KB)
PDF(7972 KB)
Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (1) : 98-106. DOI: 10.11988/ckyyb.20220952
Rock-Soil Engineering

Research Review of Scaled Physical Model Test of Water Inrush Disaster in Tunnel

  • ZHU Jie-bing, LÜ Si-qing, WANG Bin, ZHU Yong-suo
Author information +
History +

Abstract

As China's economy rapidly develops, tunnel engineering construction increasingly faces complex geological environments, such as deep burial depth, high geostress, high geo-temperature, and high osmotic pressure. Consequently, investigating the mechanisms and safety prevention and control of water inrush in tunnels under these complex environments through physical model tests has become a significant topic in rock mechanics research. Based on recent research on scaling physical model tests for water inrush in tunnels both in China and abroad, we systematically review the similarity theory of fluid-solid coupling, the development of similar materials, and osmotic pressure loading methods. Furthermore, we explore potential directions for future research. After consulting various literature sources and examining typical water inrush cases, we summarize the similarity criteria for fluid-solid coupling and high geostress, the selection schemes and proportions of similar materials, and water pressure loading schemes for tests. We also suggest that future research may focus on two aspects: 1) study of similarity criteria for physical model tests in consideration of temperature fields, and 2) study of the gradual transition process between water inrush and mud inrush.

Key words

water inrush disaster / scaled physical model test / similarity theory of fluid-solid coupling / similar material / disaster-inducing factors / disaster-causing mechanism

Cite this article

Download Citations
ZHU Jie-bing, LÜ Si-qing, WANG Bin, ZHU Yong-suo. Research Review of Scaled Physical Model Test of Water Inrush Disaster in Tunnel[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(1): 98-106 https://doi.org/10.11988/ckyyb.20220952

References

[1] 魏 星, 沈 乐, 陶志平. 富水软岩隧道突泥塌方及地层沉降的模型试验[J]. 岩土力学, 2012, 33(8): 2291-2296. (WEI Xing, SHEN Le, TAO Zhi-ping. Model Test Studies of Collapse and Settlement of Tunnel in Saturated Soft Rocks[J]. Rock and Soil Mechanics, 2012, 33(8): 2291-2296.(in Chinese))
[2] 李术才, 王 凯, 李利平, 等. 海底隧道新型可拓展突水模型试验系统的研制及应用[J]. 岩石力学与工程学报, 2014, 33(12): 2409-2418.(LI Shu-cai, WANG Kai, LI Li-ping, et al. Development and Application of an Extendable Model Test System for Water Inrush Simulation in Subsea Tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12): 2409-2418.(in Chinese))
[3] 周 毅, 李术才, 李利平, 等. 地下工程流-固耦合试验新技术及其在充填型岩溶管道突水模型试验中的应用[J]. 岩土工程学报, 2015, 37(7): 1232-1240.(ZHOU Yi, LI Shu-cai, LI Li-ping, et al. New Technology for Fluid-Solid Coupling Tests of Underground Engineering and Its Application in Experimental Simulation of Water Inrush in Filled-type Karst Conduit[J]. Chinese Journal of Geotechnical Engineering,2015,37(7):1232-1240.(in Chinese))
[4] 周 毅, 李术才, 李利平, 等. 隧道充填型岩溶管道渗透失稳突水机制三维流-固耦合模型试验研究[J]. 岩石力学与工程学报, 2015, 34(9): 1739-1749. (ZHOU Yi, LI Shu-cai , LI Li-ping, et al. 3D Fluid-Solid Coupled Model Test on Water-inrush in Tunnel Due to Seepage from Filled Karst Conduit[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(9):1739-1749.(in Chinese))
[5] 李 浪, 戎晓力, 王明洋, 等. 深长隧道突水地质灾害三维模型试验系统研制及其应用[J]. 岩石力学与工程学报, 2016, 35(3): 491-497. (LI Lang, RONG Xiao-li, WANG Ming-yang, et al. Development and Application of 3D Model Test System for Water Inrush Geohazards in Long and Deep Tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3): 491-497.(in Chinese))
[6] 王 凯, 李术才, 张庆松, 等. 流-固耦合模型试验用的新型相似材料研制及应用[J]. 岩土力学, 2016, 37(9): 2521-2533.(WANG Kai, LI Shu-cai, ZHANG Qing-song, et al. Development and Application of New Similar Materials of Surrounding Rock for a Fluid-Solid Coupling Model Test[J]. Rock and Soil Mechanics, 2016, 37(9): 2521-2533.(in Chinese))
[7] 王德明, 张庆松, 张 霄, 等. 断层破碎带隧道突水突泥灾变演化模型试验研究[J]. 岩土力学, 2016, 37(10): 2851-2860.(WANG De-ming, ZHANG Qing-song, ZHANG Xiao, et al. Model Experiment on Inrush of Water and Mud and Catastrophic Evolution in a Fault Fracture Zone Tunnel[J]. Rock and Soil Mechanics, 2016, 37(10): 2851-2860.(in Chinese))
[8] 张庆松, 王德明, 李术才, 等. 断层破碎带隧道突水突泥模型试验系统研制与应用[J]. 岩土工程学报, 2017, 39(3): 417-426.(ZHANG Qing-song, WANG De-ming, LI Shu-cai, et al. Development and Application of Model Test System for Inrush of Water and Mud of Tunnel in Fault Rupture Zone[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 417-426.(in Chinese))
[9] 吴 昊, 杨晓华, 陈星宇. 富水断层隧道涌水特征试验[J]. 长安大学学报(自然科学版), 2017, 37(5): 73-80.(WU Hao, YANG Xiao-hua, CHEN Xing-yu. Model Test on Water Gushing Characteristics of Tunnel in Water-rich Fault[J]. Journal of Chang'an University (Natural Science Edition), 2017, 37(5): 73-80.(in Chinese))
[10] 杨为民, 王 浩, 杨 昕, 等. 高地应力–高水压下隧道突水模型试验系统的研制及应用[J]. 岩石力学与工程学报, 2017, 36(增刊2): 3992-4001. (YANG Wei-min, WANG Hao, YANG Xin, et al. Development and Application of Model Test System for Water Inrush in High-geostress and High Hydraulic Pressure Tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2): 3992-4001.(in Chinese))
[11] 潘东东, 李术才, 许振浩, 等. 岩溶隧道承压隐伏溶洞突水模型试验与数值分析[J]. 岩土工程学报, 2018, 40(5): 828-836.(PAN Dong-dong, LI Shu-cai, XU Zhen-hao, et al. Model Tests and Numerical Analysis for Water Inrush Caused by Karst Caves Filled with Confined Water in Tunnels[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 828-836.(in Chinese))
[12] 李术才, 潘东东, 许振浩, 等. 承压型隐伏溶洞突水灾变演化过程模型试验[J]. 岩土力学, 2018, 39(9): 3164-3173.(LI Shu-cai, PAN Dong-dong, XU Zhen-hao, et al. A Model Test on Catastrophic Evolution Process of Water Inrush of a Concealed Karst Cave Filled with Confined Water[J]. Rock and Soil Mechanics, 2018, 39(9): 3164-3173.(in Chinese))
[13] 李秀茹, 郭恩栋, 薛 帅, 等. 富水破碎带岩溶隧道突水模型试验研究[J]. 自然灾害学报, 2019, 28(2): 101-108. (LI Xiu-ru, GUO En-dong, XUE Shuai, et al. Model Test on Water Burst of Karst Tunnel in Water-rich Fracture Zone[J]. Journal of Natural Disasters, 2019, 28(2): 101-108.(in Chinese))
[14] 张 强, 曾开帅, 张 宇, 等. 红层地区飞仙关隧道特大涌水模型试验[J]. 南水北调与水利科技, 2019, 17(5): 166-171. (ZHANG Qiang, ZENG Kai-shuai, ZHANG Yu, et al. Model Simulation Test for Large-scale Water Inflow in Feixianguan Tunnel in Red Bed Area[J]. South-to-North Water Transfers and Water Science & Technology, 2019, 17(5): 166-171.(in Chinese))
[15] 刘 涛, 孙文景, 龚旭东, 等. 基于模型试验的富水砂层新意法变形控制研究[J]. 中国海洋大学学报(自然科学版), 2020, 50(10): 73-81. (LIU Tao, SUN Wen-jing, GONG Xu-dong, et al. Study on Deformation Control of Water-rich Sand by Innovative Method Based on Model Test[J]. Periodical of Ocean University of China, 2020, 50(10): 73-81.(in Chinese))
[16] 李 浪, 陈显波, 程金星, 等. 深长隧道突涌水灾害防突岩盘模型试验研究[J]. 岩石力学与工程学报, 2020, 39(增刊2): 3278-3285. (LI Lang, CHEN Xian-bo, CHENG Jin-xing, et al. Model Test to Investigate Waterproof-resistant Slab for Water Inrush Geohazards in Deep Buried and Long Tunnels[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(S2):3278-3285.(in Chinese))
[17] 陈 强. 岩溶储气长隧道工程地质系统研究[D]. 成都: 西南交通大学, 2005.(CHEN Qiang. Study on Engineering Geological System of Karst Gas Storage Long Tunnel[D].Chengdu: Southwest Jiaotong University, 2005.(in Chinese))
[18] XUE Yi-guo, KONG Fan-meng, LI Shu-cai, et al. Water and Mud Inrush Hazard in Underground Engineering: Genesis, Evolution and Prevention[J]. Tunnelling and Underground Space Technology, 2021, 114: 103987.
[19] WANG Ying-chao, CHEN Fan, LI Xiao-zhao, et al. The Variable-Mass Seepage Law of Broken Porous Rock: An Experimental Study[J]. Geomatics, Natural Hazards and Risk, 2020, 11(1): 1991-2005.
[20] 黄 震, 李仕杰, 赵 奎, 等. 隧道完整型岩盘渗透破坏失稳机制流固耦合模型试验研究[J]. 应用基础与工程科学学报, 2019, 27(6): 1345-1356. (HUANG Zhen, LI Shi-jie, ZHAO Kui, et al. Liquid-solid Coupling Model Test to Investigate Seepage Failure Mechanism of Intact Confining Rocks of Tunnels[J]. Journal of Basic Science and Engineering, 2019, 27(6): 1345-1356.(in Chinese))
[21] 李玉生, 翁贤杰, 王人杰, 等. 隧道穿越断层破碎带突水突泥机理模拟试验研究[J]. 公路交通科技, 2020, 16(12):89-99. (LI Yu-sheng, WENG Xian-jie, WANG Ren-jie, et al. Experimental Study on Simulating Mechanism of Water and Mud Inrush in Tunnel Crossing Fault Fracture Zone[J]. Journal of Highway and Transportation Research and Development, 2020, 16(12):89-99.(in Chinese))
[22] 刘新荣, 石建勋, 刘元锋, 等. 隧道水灾害模型试验研究[J]. 中国公路学报, 2013, 26(1): 121-126. (LIU Xin-rong, SHI Jian-xun, LIU Yuan-feng, et al. Study on Tunnel Model Test of Water Disasters[J]. China Journal of Highway and Transport, 2013, 26(1): 121-126.(in Chinese))
[23] 张志成, 戎晓力, 李 浪, 等. 隧道隔水板安全厚度数值模拟与模型试验研究[J]. 辽宁工程技术大学学报(自然科学版), 2016, 35(11): 1266-1271. (ZHANG Zhi-cheng, RONG Xiao-li, LI Lang, et al. Study on Model Test and Numerical Simulation of Waterproof-resistant Slab Minimum Thickness in Tunnels[J]. Journal of Liaoning Technical University (Natural Science), 2016, 35(11): 1266-1271.(in Chinese))
[24] 张伟杰, 李术才, 魏久传, 等. 破碎围岩注浆加固体开挖稳定性及水压超载试验研究[J]. 中南大学学报(自然科学版), 2016, 47(6): 2083-2090.(ZHANG Wei-jie, LI Shu-cai, WEI Jiu-chuan, et al. Excavation Stability and Hydraulic Overload Test of Grouting Body in Fractured Zone[J]. Journal of Central South University (Science and Technology), 2016, 47(6): 2083-2090.(in Chinese))
[25] LI Shu-cai, LIU Hong-liang, LI Li-ping, et al. Large Scale Three-dimensional Seepage Analysis Model Test and Numerical Simulation Research on Undersea Tunnel[J]. Applied Ocean Research, 2016, 59: 510-520.
[26] LI Li-ping, CHEN Di-yang, LI Shu-cai, et al. Numerical Analysis and Fluid-Solid Coupling Model Test of Filling-Type Fracture Water Inrush and Mud Gush[J]. Geomechanics and Engineering, 2017, 13(6): 1011-1025.
[27] 黄 震, 李晓昭, 李仕杰, 等. 隧道突水模型试验流固耦合相似材料的研制及应用[J]. 中南大学学报(自然科学版), 2018, 49(12): 3029-3039. (HUANG Zhen, LI Xiao-zhao, LI Shi-jie, et al. Research and Development of Similar Material for Liquid-solid Coupling and Its Application in Tunnel Water-inrush Model Test[J]. Journal of Central South University (Science and Technology), 2018, 49(12): 3029-3039.(in Chinese))
[28] 王健华, 李术才, 李利平, 等. 隧道岩溶管道型突涌水动态演化特征及涌水量综合预测[J]. 岩土工程学报, 2018, 40(10): 1880-1888.(WANG Jian-hua, LI Shu-cai, LI Li-ping, et al. Dynamic Evolution Characteristics and Prediction of Water Inflow of Karst Piping-type Water Inrush of Tunnels[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1880-1888.(in Chinese))
[29] ZHANG Q, JIANG Q, ZHANG X, et al. Model Test on Development Characteristics and Displacement Variation of Water and Mud Inrush on Tunnel in Fault Fracture Zone[J]. Natural Hazards, 2019, 99(1): 467-492.
[30] 房忠栋, 杨为民, 王 旌, 等. 深埋隧道前方承压溶洞隔水岩体最小安全厚度研究[J]. 中南大学学报(自然科学版), 2021, 52(8): 2805-2816. (FANG Zhong-dong, YANG Wei-min, WANG Jing, et al. Study on the Minimum Safe Thickness of Water-proof Rock Mass in Front of Deep-buried Tunnels[J]. Journal of Central South University (Science and Technology), 2021, 52(8): 2805-2816.(in Chinese))
[31] 王 静, 刘 斌, 隋青美, 等. 新型FBG渗压传感器在隧道涌水模型中的应用[J]. 光电子·激光, 2009, 20(10): 1286-1289. (WANG Jing, LIU Bin, SUI Qing-mei, et al. Application of a Novel Fiber-optic Grating Seepage Pressure Sensor in Tunnel Water Gushing Model[J]. Journal of Optoelectronics·Laser, 2009, 20(10): 1286-1289.(in Chinese))
[32] JIANG Hai-ming, LI Lang, RONG Xiao-li, et al. Model test to Investigate Waterproof-Resistant Slab Minimum Safety Thickness for Water Inrush Geohazards[J]. Tunnelling and Underground Space Technology, 2017, 62: 35-42.
[33] YANG Wei-min, FANG Zhong-dong, YANG Xin, et al. Experimental Study of Influence of Karst Aquifer on the Law of Water Inrush in Tunnels[J]. Water, 2018, 10(9): 1211.
[34] 李术才, 刘 斌, 李树忱, 等. 基于激发极化法的隧道含水地质构造超前探测研究[J]. 岩石力学与工程学报, 2011, 30(7): 1297-1309.(LI Shu-cai, LIU Bin, LI Shu-chen, et al. Study of Advanced Detection for Tunnel Water-bearing Geological Structures with Induced Polarization Method[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(7): 1297-1309.(in Chinese))
[35] 刘 斌, 聂利超, 李术才, 等. 隧道突水灾害电阻率层析成像法实时监测数值模拟与试验研究[J]. 岩土工程学报, 2012, 34(11): 2026-2035.(LIU Bin, NIE Li-chao, LI Shu-cai, et al. Numerical Forward and Model Tests of Water Inrush Real-time Monitoring in Tunnels Based on Electrical Resistivity Tomography Method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2026-2035.(in Chinese))
[36] 李术才,赵 岩,徐帮树,等.海底隧道涌水量数值计算的渗透系数确定方法[J]. 岩土力学,2012,33(5):1497-1504,1512.(LI Shu-cai,ZHAO Yan,XU Bang-shu, et al. Study of Determining Permeability Coefficient in Water Inrush Numerical Calculation of Subsea Tunnel[J]. Rock and Soil Mechanics, 2012, 33(5): 1497-1504, 1512.(in Chinese))
[37] 刘 斌, 李术才, 聂利超, 等. 隧道含水构造直流电阻率法超前探测三维反演成像[J]. 岩土工程学报, 2012, 34(10): 1866-1876.(LIU Bin, LI Shu-cai, NIE Li-chao, et al. Advanced Detection of Water-bearing Geological Structures in Tunnels Using 3D DC Resistivity Inversion Tomography Method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1866-1876.(in Chinese))
[38] 聂利超, 李术才, 刘 斌, 等. 隧道激发极化法超前探测快速反演研究[J]. 岩土工程学报, 2012, 34(2): 222-229.(NIE Li-chao, LI Shu-cai, LIU Bin, et al. Fast Inversion for Advanced Detection Using Induced Polarization in Tunnel[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 222-229.(in Chinese))
[39] 聂利超, 张欣欣, 刘 斌, 等. 基于GPU混合反演的隧道电阻率超前探测成像研究[J]. 地球物理学报, 2017, 60(12): 4916-4927. (NIE Li-chao, ZHANG Xin-xin, LIU Bin, et al. A Study on Resistivity Imaging in Tunnel Ahead Prospecting Based on GPU Joint Inversion[J]. Chinese Journal of Geophysics, 2017, 60(12): 4916-4927.(in Chinese))
[40] LIU Bin, LIU Zheng-yu, LI Shu-cai, et al. An Improved Time-Lapse Resistivity Tomography to Monitor and Estimate the Impact on the Groundwater System Induced by Tunnel Excavation[J]. Tunnelling and Underground Space Technology, 2017, 66: 107-120.
[41] LI Shu-cai, LI Meng-tian, ZHANG Xiao, et al. Study on a New Design of Grouting Pump for Managing Water Inrush in Karst Tunnels[J]. Stavební obzor-Civil Engineering Journal, 2018, 27(3): 364-379.
[42] YANG Wei-min,WANG Mei-xia,ZHOU Zong-qing,et al. A True Triaxial Geomechanical Model Test Apparatus for Studying the Precursory Information of Water Inrush from Impermeable Rock Mass Failure[J]. Tunnelling and Underground Space Technology, 2019, 93: 103078.
[43] PAN D, LI S, XU Z, et al. Experimental and Numerical Study of the Water Inrush Mechanisms of Underground Tunnels Due to the Proximity of a Water-filled Karst Cavern[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(8): 6207-6219.
[44] LI S, GAO C, ZHOU Z, et al. Analysis on the Precursor Information of Water Inrush in Karst Tunnels: A True Triaxial Model Test Study[J]. Rock Mechanics and Rock Engineering, 2019, 52(2): 373-384.
[45] GUO Q, NIE L, LI N, et al. Water-bearing Body Prospecting Ahead of Tunnel Face Using Moving Electrical-source Method[J]. Geotechnical and Geological Engineering, 2019, 37(3): 2047-2064.
[46] GAO Cheng-lu,ZHOU Zong-qing,YANG Wei-min,et al. Model Test and Numerical Simulation Research of Water Leakage in Operating Tunnels Passing through Intersecting Faults[J]. Tunnelling and Underground Space Technology, 2019, 94: 103134.
[47] LI Li-ping, SUN Shang-qu, WANG Jing, et al. Experimental Study of the Precursor Information of the Water Inrush in Shield Tunnels Due to the Proximity of a Water-filled Cave[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 130: 104320.
[48] LI Li-ping, SUN Shang-qu, WANG Jing, et al. Development of Compound EPB Shield Model Test System for Studying the Water Inrushes in Karst Regions[J]. Tunnelling and Underground Space Technology, 2020, 101: 103404.
[49] ZHANG Z, ZHANG Q, XIANG W, et al. Development and Application of a Three-dimensional Geo-mechanical Model Test System under Hydro-mechanical Coupling[J]. Geotechnical and Geological Engineering, 2021, 39(4): 3147-3160.
[50] LIU Dun-wen, TANG Yu, CAO Min, et al. Nondestructive Testing on Cumulative Damage of Watery Fractured Rock Mass under Multiple Cycle Blasting[J]. Engineering Fracture Mechanics, 2021, 254: 107914.
[51] LI Shu-cai,LIU Cong,ZHOU Zong-qing,et al.Multi-sources Information Fusion Analysis of Water Inrush Disaster in Tunnels Based on Improved Theory of Evidence[J]. Tunnelling and Underground Space Technology, 2021, 113: 103948.
[52] GUO Yan-hui, KONG Zhi-jun, HE Jin, et al. Development and Application of the 3D Model Test System for Water and Mud Inrush of Water-Rich Fault Fracture Zone in Deep Tunnels[J]. Mathematical Problems in Engineering, 2021, 2021: 1-16.
[53] 李元海, 杜建明, 刘 毅. 隧道工程物理模拟试验技术现状与趋势分析[J]. 隧道建设(中英文), 2018, 38(1): 10-21. (LI Yuan-hai, DU Jian-ming, LIU Yi. State-of-art and Development Trend of Physical Simulation Experiment Technology for Tunnel Engineering[J]. Tunnel Construction, 2018, 38(1): 10-21.(in Chinese))
[54] 刘 博,徐 飞,赵维刚,等.隧道工程结构模型试验系统研究综述与展望[J].岩土力学,2022,43(增刊1): 452-468. (LIU Bo, XU Fei, ZHAO Wei-gang, et al. Review and Prospect of Model Test System for Tunnel Engineering Structure[J]. Rock and Soil Mechanics, 2022, 43(S1): 452-468.(in Chinese))
[55] 倪化勇, 唐 川. 中国泥石流起动物理模拟试验研究进展[J]. 水科学进展, 2014, 25(4): 606-613. (NI Hua-yong, TANG Chuan. Advances in the Physical Simulation Experiment on Debris Flow Initiation in China[J]. Advances in Water Science, 2014, 25(4): 606-613.(in Chinese))
[56] 胡耀青, 赵阳升, 杨 栋. 三维固流耦合相似模拟理论与方法[J]. 辽宁工程技术大学学报(自然科学版), 2007, 26(2): 204-206. (HU Yao-qing, ZHAO Yang-sheng, YANG Dong. Simulation Theory & Method of 3D Solid-liquid Coupling[J]. Journal of Liaoning Technical University (Natural Science), 2007, 26(2): 204-206.(in Chinese))
[57] 尹相杰. 复杂环境条件下新型流固耦合模型相似材料的研制及其应用[D]. 济南: 山东大学, 2020. (YIN Xiang-jie. Development and Application of New Fluid-Solid Coupling Model Similar Materials under Complex Environmental Conditions[D].Jinan: Shandong University, 2020. (in Chinese))
[58] 李树忱,冯现大,李术才,等.新型固流耦合相似材料的研制及其应用[J].岩石力学与工程学报,2010,29(2):281-288.(LI Shu-chen, FENG Xian-da, LI Shu-cai, et al. Research and Development of a New Similar Material for Solid-Fluid Coupling and Its Application[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(2): 281-288.(in Chinese))
[59] 彭振华,丁 浩,连建发,等.分形理论在地下工程岩体质量评价中的应用[J].隧道建设,2003,23(1):7-10. (PENG Zhen-hua, DING Hao, LIAN Jian-fa, et al. Application of Fractal Theory to Rock Mass Quality Evaluation of Underground Engineering[J]. Tunnel Construction, 2003, 23(1): 7-10.(in Chinese))
[60] 张强勇, 李术才, 李 勇, 等. 地下工程模型试验新方法、新技术及工程应用[M]. 北京: 科学出版社, 2012. (ZHANG Qiang-yong, LI Shu-cai, LI Yong, et al. New Methods, Technologies and Engineering Applications of Model Tests for Underground Engineering[M]. Beijing: China Science Press, 2012.(in Chinese))
PDF(7972 KB)

Accesses

Citation

Detail

Sections
Recommended

/