Monitoring the Geostress of Rock Mass in Fault Zone Using Hollow-Inclusion Strain Gauge

HAN Xiao-yu, DONG Zhi-hong, FU Ping, LIU Yuan-kun

Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (12) : 1-7.

PDF(1908 KB)
PDF(1908 KB)
Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (12) : 1-7. DOI: 10.11988/ckyyb.20220672
ENGINEERING GEOLOGY SURVEY OF TUNNELS

Monitoring the Geostress of Rock Mass in Fault Zone Using Hollow-Inclusion Strain Gauge

  • HAN Xiao-yu, DONG Zhi-hong, FU Ping, LIU Yuan-kun
Author information +
History +

Abstract

The hollow-inclusion(HI) strain gauge is used for the first time to monitor the geostress of rock mass in fault zone. A cloud monitoring system based on half-bridge measurement circuit of Wheatstone bridge was established with the hollow-inclusion strain gauge buried at the depth of 24 m in the large-diameter borehole drilled at appropriate position by using centering device and cement paste grouting method during tunnel excavation. Only the elastic parameters of cement paste and hollow inclusion material were considered to calculate the correction coefficient. The three-dimensional stress increment was calculated after the initial time of strain calculation was determined by analyzing the law of monitoring data. Results showed that, with September 16, 2021 as the initial calculation date, the range of the first principal stress (σ1) in the fourth and fifth period was 10.3~15.0 MPa with a gentle dip W direction; the second principal stress (σ2) ranged between 3.1 MPa and 4.6 MPa, with a steep dip angle from NEE direction to SEE direction; the third principal stress (σ3) varied between 0.2 MPa and 1.8 MPa, and the direction is gentle dip angle near S direction. The components of maximum horizontal principal stress (σH) and minimum horizontal principal stress (σh) varied from 10.1 MPa to 13.9 MPa, and 0.2 MPa to 1.8 MPa, respectively. The direction of maximum horizontal principal stress (αH) was nearly EW. The results demonstrate that the initial calculation time determined by analyzing monitoring data is more rational. The stress monitoring of hollow inclusion strain gauge is affected by multiple factors including excavation-caused stress disturbance and one-time stress and deformation adjustment of the monitored segment. The obtained σH and αH are close to in-situ stress test results, and the monitoring result reflects the stress field characteristics of the Longpan-Qiaohou fault zone.

Key words

geostress / hollow-inclusion strain gauge / stress monitoring / stress increment calculation / Central Yunnan Water Diversion Project / Longpan-Qiaohou fault

Cite this article

Download Citations
HAN Xiao-yu, DONG Zhi-hong, FU Ping, LIU Yuan-kun. Monitoring the Geostress of Rock Mass in Fault Zone Using Hollow-Inclusion Strain Gauge[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(12): 1-7 https://doi.org/10.11988/ckyyb.20220672

References

[1] 张 芳,刘泉声,张程远,等.流变应力恢复法地应力测试及装置[J].岩土力学,2014,35(5):1506-1513.
[2] 郭建伟,朱元广,王 蕾,等.基于六向压应力传感器流变应力恢复法的地应力测量[J].科学技术与工程,2020,20(34):14027-14033.
[3] 韩晓玉,付 平,邬爱清,等.快速测定软岩地层地应力的测量装置及方法:中国,CN110514342A [P]. 2019-11-29.
[4] 韩晓玉,董志宏,刘元坤,等. 钻孔用组合单向液压枕测深部断裂带地应力的装置及方法:中国,CN113532719A [P]. 2021-10-22.
[5] 沈荣喜,侯振海,王恩元,等.基于三向应力监测装置的地应力测量方法研究[J].岩石力学与工程学报,2019,38(增刊2):3618-3624.
[6] SJOBERG J, CHRISTIANSSON R, HUDSON J A. ISRM Suggested Methods for Rock Stress Estimation-Part 2: Overcoring Methods[J]. International Journal of Rock Mechanics Mining Sciences, 2003, 40(7): 999-1010.
[7] 韩晓玉,邬爱清,徐春敏.地应力测量精度及其全要素量化表征研究[J].长江科学院院报,2021,38(8):84-90.
[8] MARTIN C D, LANYON G W. Measurement of in-situ Stress in Weak Rocks at Mont Terri Rock Laboratory, Switzerland[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(7/8): 1077-1088.
[9] 尹爱民,王庆刚,刘建庄,等.基于空心包体应变法的某矿区软弱岩层地应力测量[J].现代矿业,2021,37(10):98-100.
[10]刘元坤,汪 洋,艾 凯.金沙江白鹤滩水电站柱状节理玄武岩试验洞研究地应力测试与监测成果报告[R]. 武汉:长江科学院,2011.
[11]DAHNER C, DINEVA S. Small-scale Variations in Mining-indued Stresses, Monitored in a Seismically Active Underground Mine[C]//Underground Mining Technology, doi: 10.36487/ACG_repo/2035_09.
[12]刘 宁,张春生,陈祥荣,等.深埋隧洞开挖围岩应力演化过程监测及特征研究[J].岩石力学与工程学报,2011,30(9):1729-1737.
[13]李 远,刘子斌,乔 兰,等.基于数字化CSIRO双温补偿方法的岩体扰动应力长期监测系统的研发与应用[J].工程科学与技术,2018,50(5):18-26.
[14]李子林,孙歆硕,李 远,等.扰动应力监测系统的研发及在马鞍山矿的应用[J].中国矿业,2019,28(9):74-79.
[15]李天宇,李 远,秦志暄,等.基于空心包体应变计的扰动应力云监测系统构建[J].中国矿业,2021,30(10):96-105.
[16]刘允芳,尹健民,等.地应力测量方法和工程应用[M]. 武汉:湖北科学技术出版,2014.
[17]何 洵,李 铀.隧道应力扰动区及其影响因素分析[J].铁道科学与工程学报,2019,16(11):2782-2790.
[18]付 平,张新辉,刘元坤,等.滇中香炉山引水隧洞工程区地应力场特征及断裂影响模糊综合评价[J].中国地质灾害与防治学报,2020,31(5):123-132.
[19]张新辉,付 平,尹健民,等.滇中引水工程香炉山隧洞地应力特征及其活动构造响应[J].岩土工程学报,2021,43(1):130-139.
PDF(1908 KB)

Accesses

Citation

Detail

Sections
Recommended

/