Experimental Study on Resistivity Structural Characteristics of Laterite During Consolidation and Compression

PENG Guang-can, XU Xing-qian, QU Xin, ZHAO Xi, WANG Hai-jun, CAI Bo

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (11) : 140-145.

PDF(6290 KB)
PDF(6290 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (11) : 140-145. DOI: 10.11988/ckyyb.20220645
Rock-Soil Engineering

Experimental Study on Resistivity Structural Characteristics of Laterite During Consolidation and Compression

  • PENG Guang-can1, XU Xing-qian1, QU Xin2, ZHAO Xi1, WANG Hai-jun1, CAI Bo1
Author information +
History +

Abstract

Resistivity parameters related to structural properties are effective indicators of soil structure changes during compression and consolidation, and play a crucial role in quantifying these changes. We employed a modified resistivity instrument to test the vertical and lateral resistivities of Yunnan laterite during compression and consolidation. By investigating the variations of resistivity parameters (including structure factor, shape factor, and anisotropy coefficient), we aimed to analyze the changes in laterite soil structure. By using comprehensive index method and principal component analysis method, we put forward an integrated index to comprehensively evaluate the resistivity parameters related to structural properties and soil compaction. Results demonstrate that the vertical resistivity, lateral resistivity, average structure factor, and average shape factor of laterite gradually decrease as the vertical multi-stage load increases. Conversely, the anisotropy coefficients exhibit an initial decrease followed by a gradual increase to stability. Resistivity parameters indirectly reflect the structural strength and particles cementation of laterite. Additionally, the proposed comprehensive evaluation index ER is quantitatively correlated with compactness K with high fitting accuracy. In conclusion, the proposed index proves to be a feasible tool for estimating the compactness of laterite and offers a convenient approach for the rapid evaluation of compactness in rolling projects.

Key words

laterite / resistivity / consolidation and compression / structural property / compactness

Cite this article

Download Citations
PENG Guang-can, XU Xing-qian, QU Xin, ZHAO Xi, WANG Hai-jun, CAI Bo. Experimental Study on Resistivity Structural Characteristics of Laterite During Consolidation and Compression[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(11): 140-145 https://doi.org/10.11988/ckyyb.20220645

References

[1] 曾 静, 邓志斌, 兰 霞, 等. 竹城公路高液限土与红黏土路用性能的试验研究[J]. 岩土力学, 2006, 27(1): 89-92, 98.
[2] 张培培, 罗保才, 刘娉慧, 等. 含水率对红黏土强度特性的影响[J]. 水力发电, 2019, 45(5): 45-49.
[3] 傅鑫晖, 颜荣涛, 于海浩, 等. 红黏土的强度机理[J]. 桂林理工大学学报, 2014, 34(4): 691-696.
[4] 周训华, 廖义玲. 红黏土颗粒之间结构连结的胶体化学特征[J]. 贵州工业大学学报(自然科学版), 2004, 33(1): 26-29.
[5] ARCHIE G E. The Electric Resistivity Log as Aid in Determining Some Reservoir Characteristics[J]. Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, 1942, 146(1): 54-62.
[6] ARULANANDA N K, MURALEETHARAN K K. Level Ground Soil-Liquefaction Analysis Using in Situ Properties: II[J]. Journal of Geotechnical Engineering, 1988, 114(7):771-790.
[7] HUNTLEY D. Relations between Permeability and Electrical Resistivity in Granular Aquifers[J]. Groundwater, 1986, 24(4): 466-474.
[8] 于小军, 刘松玉. 电阻率指标在膨胀土结构研究中的应用探讨[J]. 岩土工程学报, 2004, 26(3): 393-396.
[9] 顾明芬,刘松玉,洪振舜,等.水泥土结构特性的定量化研究[J].岩土力学,2005,26(11):1862-1865, 1868.
[10] 董晓强,白晓红,吕永康,等.污染对水泥土电阻率特性影响的试验研究[J]. 岩土力学,2011,32(1):91-94.
[11] 黄凤凤, 周 伟, 刘彦忠, 等. 水玻璃固化黄土过程中电阻率参数的试验研究[J]. 广西大学学报(自然科学版), 2015, 40(1): 213-219.
[12] 查甫生, 刘晶晶, 许 龙, 等. 水泥-粉煤灰固化/稳定重金属污染土的电阻率特性试验研究[J]. 岩土力学, 2019, 40(12): 4573-4580, 4606.
[13] PARVIN K K, KORD S, SOLEYMANZADEH A. The Effect of Pressure on Electrical Rock Typing, Formation Resistivity Factor, and Cementation Factor[J]. Journal of Petroleum Science and Engineering, 2021, 204: 108757.
[14] GB/T 50123—2019,土工试验方法标准[S]. 北京: 中国计划出版社, 2019.
[15] 查甫生, 刘松玉, 杜延军, 等. 基于电阻率法的膨胀土吸水膨胀过程中结构变化定量研究[J]. 岩土工程学报, 2008, 30(12): 1832-1839.
[16] 张坤勇, 殷宗泽, 梅国雄. 土体各向异性研究进展[J]. 岩土力学, 2004, 25(9): 1503-1509.
[17] HOLTZ R D, KOVACS W D. An Introduction to Geotechnical Engineering[M]. Englewood Cliffs, New Jersy: Prentice-Hall, 1981.
[18] LAMBE T W. The Structure of Compacted Clays[J]. Journal of the Soil Mechanics and Foundations Division, 1958, 84(2): 1654-1-1654-34.
[19] 周冬冬, 刘建刚, 蒋甫玉. 高密度电法在挡墙测量中的应用[J]. 长江科学院院报, 2015, 32(2): 68-71.
[20] 李文忠, 孙卫民. 分布式高密度电法装置类型选择及工程勘查应用[J]. 长江科学院院报, 2019, 36(10): 161-164.
[21] 樊炳森, 郭成超. 高密度电法在水库渗漏检测中的应用[J]. 长江科学院院报, 2019, 36(10): 165-168.
[22] JTG/T 3610—2019,公路路基施工技术规范[S]. 北京:人民交通出版社,2019.
PDF(6290 KB)

Accesses

Citation

Detail

Sections
Recommended

/