Spatial and Temporal Variations and Influencing Factors of Evapotran- spiration of Reference Crop in Yunnan Province Based on Cloud Model

YANG Rui, WANG Long

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (11) : 85-92.

PDF(15523 KB)
PDF(15523 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (11) : 85-92. DOI: 10.11988/ckyyb.20220632
Agricultural Water Conservancy

Spatial and Temporal Variations and Influencing Factors of Evapotran- spiration of Reference Crop in Yunnan Province Based on Cloud Model

  • YANG Rui, WANG Long
Author information +
History +

Abstract

Cloud model offers a quantitative representation of the randomness and fuzziness associated with reference crop evapotranspiration (ET0). To provide valuable insights for agricultural irrigation, flood, and drought studies in Yunnan Province, we employed cloud model to analyze the spatiotemporal distribution of ET0 in the region based on daily meteorological data from 31 meteorological stations in Yunnan spanning the period from 1958 to 2013. ET0 was calculated and examined using linear trend, partial correlation analysis, and the M-K methods. Results revealed a lack of consistency in the homogeneity of the temporal-spatial distribution of ET0 in Yunnan. The temporal variation exhibited lower homogeneity and stability compared to the spatial distribution. Over the 56 years, no significant increasing trend in ET0 was observed. However, after the year 2000, a significant upward trend in ET0 became evident, accompanied by a decrease in homogeneity and stability. Seasonally, spring exhibited the highest ET0, while winter displayed the lowest values. Notably, ET0 distribution in winter and spring appeared uneven and unstable. Spatially, the middle and south region exhibited higher ET0 values than the eastern and western and northern areas. Further analysis highlighted an increasing trend in ET0 in western Yunnan, while the middle and eastern regions experienced a decrease. The high-value areas in central Yunnan exhibited uneven and unstable variations in ET0. Additionally, our analysis identified humidity, sunshine duration, and wind speed as the primary influencing factors on ET0.

Key words

evapotranspiration / reference crop / influencing factors / spatial and temporal variations / cloud model / Yunnan Province

Cite this article

Download Citations
YANG Rui, WANG Long. Spatial and Temporal Variations and Influencing Factors of Evapotran- spiration of Reference Crop in Yunnan Province Based on Cloud Model[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(11): 85-92 https://doi.org/10.11988/ckyyb.20220632

References

[1] 尹云鹤, 吴绍洪, 戴尔阜. 1971—2008年我国潜在蒸散时空演变的归因[J]. 科学通报, 2010, 55(22): 2226-2234.
[2] THOMAS A. Spatial and Temporal Characteristics of Potential Evapotranspiration Trends over China[J]. International Journal of Climatology, 2000, 20(4): 381-396.
[3] 韩焕豪,崔远来,王树鹏,等.云南省参考作物蒸发蒸腾量时空变化特征[J]. 节水灌溉,2016(8):182-186.
[4] 陈正发, 史东梅, 何 伟, 等. 近60年云南省参考作物蒸发量时空分布及演变趋势研究[J]. 贵州师范大学学报(自然科学版), 2018, 36(6): 83-91.
[5] 马显莹,李 靖,顾世祥,等. 高原山区主要气候因子对ET0影响分析研究[J]. 中国农村水利水电, 2010(10): 9-12.
[6] 顾世祥, 何大明, 李远华, 等. 纵向岭谷区参考作物腾发量变化的特点和趋势[J]. 农业工程学报, 2007, 23(3): 24-29.
[7] 温 庆, 张刘东, 代启亮. 滇池流域多年ET0及其影响因素变化趋势分析[J]. 水利水电技术, 2018, 49(12): 27-35.
[8] 张伟伟, 王 允, 张国斌. 西南地区1960—2013年参考作物蒸散量时空变化特征及成因分析[J]. 中国农学通报, 2016, 32(2): 135-141.
[9] 刘 悦,崔宁博,李 果,等. 近56年西南地区四季参考作物蒸散量变化成因分析[J]. 节水灌溉, 2018(12): 54-59.
[10] 李德毅, 杜 鹢. 不确定性人工智能[M]. 北京: 国防工业出版社, 2005.
[11] 李德毅, 刘常昱, 杜 鹢, 等. 不确定性人工智能[J]. 软件学报, 2004, 15(11): 1583-1594.
[12] 李德毅, 刘常昱. 论正态云模型的普适性[J]. 中国工程科学, 2004, 6(8): 28-34.
[13] 任晓华, 何士华, 马晓青, 等. 1958—2017年滇中引水工程受水区降水时空变化[J]. 长江科学院院报, 2021, 38(8): 33-40.
[14] 詹 存, 梁 川, 赵 璐, 等. 基于云模型的江河源区降雨时空分布特征分析[J]. 长江科学院院报, 2014, 31(8): 23-28.
[15] 许 健, 康燕霞. 基于云模型的中国参考作物蒸散量时空分异特征[J]. 兰州大学学报(自然科学版), 2016, 52(2): 245-250.
[16] 殷长琛, 齐广平, 康燕霞. 基于云模型的甘肃省参考作物蒸散量时空分布特征[J]. 农业工程学报, 2015, 31(8): 152-158.
[17] 殷长琛, 齐广平, 康燕霞, 等. 甘肃省参考作物蒸散量变化特征与影响因子分析[J]. 干旱地区农业研究, 2016, 34(1): 7-15, 49.
[18] 金菊良, 宋占智, 蒋尚明, 等. 基于云模型的淮北平原参考作物蒸散量时空分布[J]. 南水北调与水利科技, 2017, 15(1): 25-32.
[19] 汪精海, 齐广平, 康燕霞, 等. 黑河流域潜在蒸散及其影响因素的不确定性分析[J]. 生态学杂志, 2017, 36(1): 172-180.
[20] 周 跃, 吕喜玺, 许建初. 云南省气候变化影响评估报告[M]. 北京: 气象出版社, 2011.
[21] 《云南省未来10~30年气候变化预估及其影响评估报告》编写委员会. 云南省未来10~30年气候变化预估及其影响评估报告[M]. 北京: 气象出版社, 2014.
[22] 杨一光. 云南省综合自然区划[M]. 北京: 高等教育出版社, 1991.
[23] 胡庆芳. 参考腾发量的计算和预测方法研究[D]. 北京: 清华大学, 2005.
[24] 王学锋, 朱 勇, 范立张, 等. 1961—2007年云南太阳总辐射时空变化特征[J]. 气候变化研究进展, 2009, 5(1): 29-34.
[25] 杨小梅, 安文玲, 张 薇, 等. 中国西南地区日照时数变化及影响因素[J]. 兰州大学学报(自然科学版), 2012, 48(5): 52-60.
[26] 张志斌,杨 莹,张小平,等. 我国西南地区风速变化及其影响因素[J]. 生态学报,2014,34(2):471-481.
[27] 马振锋, 彭 骏, 高文良, 等. 近40年西南地区的气候变化事实[J]. 高原气象, 2006, 25(4):633-642.
PDF(15523 KB)

Accesses

Citation

Detail

Sections
Recommended

/