Inversion of Water Quality Parameters in Jianghan Plain Based on Sentinel2-L1C Image

ZOU Zhi-ke, YU Lei, ZHANG Yu, WANG Wen-juan, ZHAO Yong-li, SUN Jian-dong, CHENG Qing-lei

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (9) : 181-187.

PDF(7650 KB)
PDF(7650 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (9) : 181-187. DOI: 10.11988/ckyyb.20220515
Water Conservancy Informatization

Inversion of Water Quality Parameters in Jianghan Plain Based on Sentinel2-L1C Image

  • ZOU Zhi-ke1, YU Lei1, ZHANG Yu1, WANG Wen-juan1, ZHAO Yong-li2, SUN Jian-dong3, CHENG Qing-lei3
Author information +
History +

Abstract

Remote sensing technology has emerged as a powerful tool for monitoring inland water quality. To investigate changes in concentrations of total phosphorus (TP), total nitrogen (TN), and chemical oxygen demand (COD) in the aquaculture area of Jianghan Plain, we developed inversion models utilizing Sentinel2-L1C remote sensing data. These models are based on three optical active substances: water transparency, suspended matter concentration, and Chl-a concentration. By correlating the calculated water transparency, suspended solids concentration, and Chl-a concentration with TP, TN, and COD concentrations at regional water fitting points, we established indirect inversion models to estimate the concentrations of these substances and validated the models using fitting points data. Our results demonstrate a strong correlation between water transparency and TP concentration. Higher water transparency indicates better water quality and lower TP concentration. The concentration of suspended matter in water is highly correlated with the TN concentration. Increased suspended matter concentration indicates inferior water quality and higher TN concentration. Additionally, higher water Chl-a concentration corresponds to higher COD. The deterministic coefficients of the indirect fitting models for TP concentration, TN concentration, and COD were all greater than 0.6. Furthermore, the TP concentration, TN concentration, and COD concentration in water bodies of monitoring points in Jianghan Plain were simulated. The results align with the expected patterns in feeding period and reflect the spatio-temporal evolution of water quality parameters in the aquaculture areas of Jianghan Plain. This research contributes practical insights into understanding the dynamics of large-scale water quality parameters in aquaculture areas.

Key words

water quality parameters / Sentinel2-L1C image / Jianghan Plain / optically active compounds / retrieval model

Cite this article

Download Citations
ZOU Zhi-ke, YU Lei, ZHANG Yu, WANG Wen-juan, ZHAO Yong-li, SUN Jian-dong, CHENG Qing-lei. Inversion of Water Quality Parameters in Jianghan Plain Based on Sentinel2-L1C Image[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(9): 181-187 https://doi.org/10.11988/ckyyb.20220515

References

[1] CARVALHO L, MCDONALD C, DE HOYOS C, et al. Sustaining Recreational Quality of European Lakes: Minimizing the Health Risks from Algal Blooms through Phosphorus Control[J]. Journal of Applied Ecology, 2013, 50(2): 315-323.
[2] 陈小锋. 我国湖泊富营养化区域差异性调查及氮素循环研究[D]. 南京: 南京大学, 2012.
[3] HESTIR E L, BRANDO V E, BRESCIANI M, et al. Measuring Freshwater Aquatic Ecosystems: The Need for a Hyperspectral Global Mapping Satellite Mission[J]. Remote Sensing of Environment, 2015, 167: 181-195.
[4] BUKATA R P.Retrospection and Introspection on Remote Sensing of Inland Water Quality: “Like DÉJÀ Vu all over again”[J].Journal of Great Lakes Research,2013,39:2-5.
[5] 杨 振, 卢小平, 武永斌, 等. 无人机高光谱遥感的水质参数反演与模型构建[J]. 测绘科学, 2020, 45(9): 60-64, 95.
[6] 王歆晖, 巩彩兰, 胡 勇, 等. 水质参数遥感反演光谱特征构建与敏感性分析[J]. 光谱学与光谱分析, 2021, 41(6): 1880-1885.
[7] GILERSON A A,GITELSON A A,ZHOU J,et al.Algorithms for Remote Estimation of Chlorophyll-a in Coastal and Inland Waters Using Red and near Infrared Bands[J]. Optics Express, 2010, 18(23): 24109-24125.
[8] MOORE T S,DOWELL M D,BRADT S,et al.An Optical Water Type Framework for Selecting and Blending Retrievals from Bio-Optical Algorithms in Lakes and Coastal Waters[J].Remote Sensing of Environment,2014,143:97-111.
[9] SILIÓ-CALZADA A, BRICAUD A, UITZ J, et al. Estimation of New Primary Production in the Benguela Upwelling Area, Using ENVISAT Satellite Data and a Model Dependent on the Phytoplankton Community Size Structure[J]. Journal of Geophysical Research: Oceans, 2008, 113(C11): C11023.
[10] PANIGRAHI S, WIKNER J, PANIGRAHY R C, et al. Variability of Nutrients and Phytoplankton Biomass in a Shallow Brackish Water Ecosystem (Chilika Lagoon, India)[J]. Limnology, 2009, 10(2): 73-85.
[11] XIONG Y, RAN Y, ZHAO S, et al. Remotely Assessing and Monitoring Coastal and Inland Water Quality in China: Progress, Challenges and Outlook[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(12): 1266-1302.
[12] 杨国范, 阎孟冬, 殷 飞. 清河水库叶绿素a浓度反演模型研究[J]. 遥感信息, 2016, 31(5): 74-78.
[13] CAO Y,YE Y,ZHAO H,et al.Remote Sensing of Water Quality Based on HJ-1A HSI Imagery with Modified Discrete Binary Particle Swarm Optimization-Partial Least Squares (MDBPSO-PLS) in Inland Waters: A Case in Weishan Lake[J]. Ecological Informatics,2018,44:21-32.
[14] 陈 军, 权文婷, 孙记红. 太湖氮磷浓度与水质因子的关系[J]. 中国环境监测, 2011, 27(3): 79-83.
[15] 况润元, 谢 佳, 张 萌, 等. 基于实测数据的鄱阳湖悬浮泥沙粒度遥感反演模式分析[J]. 长江科学院院报, 2017, 34(11): 132-137, 147.
[16] 肖 潇, 徐 坚, 赵登忠, 等. 基于国产卫星多光谱影像的河流水体浊度遥感联合反演研究[J]. 长江科学院院报, 2021, 38(6): 128-136.
[17] 崔祎满. 江汉平原水资源保护及战略对策研究[D]. 武汉: 武汉理工大学, 2004.
[18] 刘静静. 江汉平原湖泊面源污染效应及调控机制研究[D]. 荆州: 长江大学, 2012.
[19] 胡久生, 邢晓燕, 康 群, 等. 江汉平原农村环境污染现状及对策[J]. 现代农业科技, 2013(9): 235-239, 241.
[20] FAN D X, HUANG Y L, SONG L X, et al. Prediction of Chlorophyll a Concentration Using HJ-1 Satellite Imagery for Xiangxi Bay in Three Gorges Reservoir[J]. Water Science and Engineering, 2014, 7(1): 70-80.
[21] 刘延龙, 张保华, 姚 昕, 等. 东平湖水体透明度的遥感反演研究[J]. 测绘科学, 2018,43(7):72-78.
[22] 烟贯发, 杜百利, 张冬有, 等. 松花江哈尔滨段悬浮物含量遥感反演与克里格插值预测精度对比[J]. 湿地科学, 2015,13(2):184-189.
[23] HOU X, FENG L, DUAN H, et al. Fifteen-Year Monitoring of the Turbidity Dynamics in Large Lakes and Reservoirs in the Middle and Lower Basin of the Yangtze River, China[J]. Remote Sensing of Environment, 2017, 190: 107-121.
[24] 孙青玲, 黑永雪, 郭 磊. 地表水水质常规监测问题分析[J]. 资源节约与环保, 2013(8): 140.
[25] REYJOL Y, ARGILLIER C, BONNE W, et al. Assessing the Ecological Status in the Context of the European Water Framework Directive: Where do we Go Now?[J]. Science of the Total Environment, 2014, 497/498: 332-344.
[26] 李 渊. 基于数据同化的太湖叶绿素浓度遥感估算[D]. 南京: 南京师范大学, 2014.
[27] 刘 静, 况润元, 李建新, 等. 基于实测数据的鄱阳湖总氮、总磷遥感反演模型研究[J]. 西南农业学报, 2020, 33(9): 2088-2094.
[28] 郭云开, 许 敏, 张晓炯, 等. 结合PRO-4SAIL和BP神经网络的叶绿素含量高光谱反演[J]. 测绘通报, 2020(3): 21-24.
[29] 邵琥翔, 丁 凤, 杨 健, 等. 基于深度学习的黑臭水体遥感信息提取模型[J]. 长江科学院院报, 2022, 39(4): 156-162.
[30] 刘俊威, 吕惠进. 人工神经网络在水质预测中的应用研究[J]. 长江科学院院报, 2012, 29(9): 95-97.
PDF(7650 KB)

Accesses

Citation

Detail

Sections
Recommended

/