Inverse Analysis of Arch Dam Thermal Parameters Based on Cross-Global Artificial Bee Colony Algorithm

MAO Da-wei, ZHANG Ao, WANG Feng, ZHOU Yi-hong, TAN Tian-long

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (9) : 162-169.

PDF(6364 KB)
PDF(6364 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (9) : 162-169. DOI: 10.11988/ckyyb.20220456
Hydraulic Structure and Material

Inverse Analysis of Arch Dam Thermal Parameters Based on Cross-Global Artificial Bee Colony Algorithm

  • MAO Da-wei1, ZHANG Ao2,3, WANG Feng2,3, ZHOU Yi-hong2,3, TAN Tian-long2,3
Author information +
History +

Abstract

Affected by factors such as ambient temperature, cooling water, and surface insulation, the actual thermal parameters of arch dam during construction differ remarkably from laboratory test results. Based on temperature data obtained by using distributed optical fiber sensor, we employed the cross-global artificial bee colony (CGABC) algorithm determine the concrete thermal parameters of Baihetan double-curvature arch dam and capture their real-time variations. To address the slow convergence and susceptibility to local optimals encountered by traditional artificial bee colony (ABC) algorithm in obtaining the optimal function value, we developed the CGABC which integrates the concept of global optimal solutions from particle swarm optimization (PSO) and the cross-operation strategy of genetic algorithm (GA). By considering the influence of multi-stage cooling water and environmental temperature, we employed CGABC for the inversion of concrete thermal parameters of Baihetan arch dam. The inversion results demonstrate a favorable agreement between CGABC-calculated values and measured temperatures. In conclusion, CGABC exhibits excellent adaptability in the thermal parameter inversion of arch dams.

Key words

artificial bee colony algorithm / arch dam / thermal parameters / inversion analysis / pipe cooling

Cite this article

Download Citations
MAO Da-wei, ZHANG Ao, WANG Feng, ZHOU Yi-hong, TAN Tian-long. Inverse Analysis of Arch Dam Thermal Parameters Based on Cross-Global Artificial Bee Colony Algorithm[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(9): 162-169 https://doi.org/10.11988/ckyyb.20220456

References

[1] CONCEIÇÃO J, FARIA R, AZENHA M, et al. A New Method Based on Equivalent Surfaces for Simulation of the Post-Cooling in Concrete Arch Dams during Construction[J]. Engineering Structures, 2020, 209: 109976.
[2] LI H, FU S, LI G, et al. FEA of Effects Induced by Diurnal Temperature Variation on Downstream Surface of Xiaowan Arch Dam[J]. Advances in Civil Engineering, 2021, 2021: 1-11.
[3] 傅少君, 张石虎, 解 敏, 等. 混凝土拱坝温控的动态分析理论与实践[J]. 岩石力学与工程学报, 2012, 31(1): 113-122.
[4] ZHAO Y, LI G, FAN C, et al. Effect of Thermal Parameters on Hydration Heat Temperature and Thermal Stress of Mass Concrete[J]. Advances in Materials Science and Engineering, 2021, 2021: 1-16.
[5] 王振红, 朱岳明, 武圈怀, 等. 混凝土热学参数试验与反分析研究[J]. 岩土力学, 2009, 30(6): 1821-1825, 1830.
[6] 林 鹏, 胡 杭, 郑 东, 等. 大体积混凝土真实温度场演化规律试验[J]. 清华大学学报(自然科学版), 2015, 55(1): 27-32.
[7] 宁泽宇, 林 鹏, 彭浩洋, 等. 混凝土实时温度数据移动平均分析方法及应用[J]. 清华大学学报(自然科学版), 2021, 61(7): 681-687.
[8] 周宜红, 周建兵, 黄耀英, 等. 基于分布式光纤的混凝土表面温度梯度监测试验及反馈研究[J]. 长江科学院院报, 2012, 29(9): 42-45.
[9] 周宜红, 宫经伟, 黄耀英, 等. 泄洪洞衬砌混凝土施工期光纤测温现场试验[J]. 华中科技大学学报(自然科学版), 2013, 41(7): 15-20.
[10] 梁志鹏, 周华维, 赵春菊, 等. 混凝土坝分段连续测温光纤测点精准定位方法研究[J]. 工程科学与技术, 2020, 52(3): 52-61.
[11] 朱伯芳. 大体积混凝土温度应力与温度控制[M]. 2版. 北京: 中国水利水电出版社, 2012.
[12] 周建兵, 黄耀英, 何小鹏, 等. 向家坝导流底孔回填混凝土温度动态预测[J]. 长江科学院院报, 2015, 32(2): 119-122.
[13] 张玉平, 马 超, 李传习, 等. 基于均匀设计及BP神经网络的大体积混凝土热学参数反分析[J]. 土木与环境工程学报(中英文), 2021, 43(2): 148-157.
[14] 倪智强, 周兰庭. 基于改进蚁群算法的混凝土坝热学参数反演[J]. 水电能源科学, 2018, 36(4): 82-85.
[15] 赵志方, 戴佳敏, 吉顺文. 基于热学参数反演分析的常态大坝混凝土温度场仿真[J]. 浙江工业大学学报, 2019, 47(1): 1-5.
[16] KARABOGA D, AKAY B. A Comparative Study of Artificial Bee Colony Algorithm[J]. Applied Mathematics and Computation, 2009, 214(1): 108-132.
[17] KARABOGA D, GORKEMLI B, OZTURK C, et al. A Comprehensive Survey: Artificial Bee Colony (ABC) Algorithm and Applications[J]. Artificial Intelligence Review, 2014, 42(1): 21-57.
[18] KARABOGA D, BASTURK B. A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm[J]. Journal of Global Optimization, 2007, 39(3): 459-471.
[19] ABU-MOUTI F S, EL-HAWARY M E. Optimal Distributed Generation Allocation and Sizing in Distribution Systems via Artificial Bee Colony Algorithm[J]. IEEE Transactions on Power Delivery, 2011, 26(4): 2090-2101.
[20] 唐 煜, 岳 杰, 华旭刚. 基于人工蜂群算法的桥梁有限元模型局部刚度修正[J]. 铁道科学与工程学报, 2021, 18(9): 2333-2343.
[21] 康 飞, 李俊杰, 许 青, 等. 改进人工蜂群算法及其在反演分析中的应用[J]. 水电能源科学, 2009, 27(1): 126-129.
[22] 王佳萍, 杜成斌, 王 翔, 等. 基于XFEM和改进人工蜂群算法的结构内部缺陷反演[J]. 工程力学, 2019, 36(9): 25-31.
[23] 苏国韶, 钱 坤. 人工蜂群算法在重力坝断面优化设计中的应用[J]. 计算机工程与应用,2011,47(11):223-225,248.
[24] KARABOGA D, BASTURK B. On the Performance of Artificial Bee Colony (ABC) Algorithm[J]. Applied Soft Computing, 2008, 8(1): 687-697.
[25] ZHOU X, WU Y, ZHONG M, et al. Artificial Bee Colony Algorithm Based on Multiple Neighborhood Topologies[J]. Applied Soft Computing, 2021, 111: 107697.
[26] ZHU G, KWONG S. Gbest-Guided Artificial Bee Colony Algorithm for Numerical Function Optimization[J]. Applied Mathematics and Computation, 2010, 217(7): 3166-3173.
[27] XUE Y, JIANG J, ZHAO B, et al. A Self-Adaptive Artificial Bee Colony Algorithm Based on Global Best for Global Optimization[J]. Soft Computing, 2018, 22(9): 2935-2952.
[28] 王 伟, 徐 锴, 方绪顺, 等. 基于改进粒子群算法的大坝监控加权统计模型[J]. 长江科学院院报, 2017, 34(8): 41-46.
[29] 戴晓晖, 李敏强, 寇纪淞. 遗传算法理论研究综述[J]. 控制与决策, 2000, 15(3): 263-268, 273.
[30] 王 峰, 周宜红, 赵春菊, 等. 基于混合粒子群算法的特高拱坝不同材料热学参数反演分析[J]. 清华大学学报(自然科学版), 2021, 61(7): 747-755.
[31] 朱伯芳, 张超然. 高拱坝结构安全关键技术研究[M]. 北京: 中国水利水电出版社, 2010.
[32] 杨华全,董 芸,肖开涛.白鹤滩水电站大坝混凝土配合比试验研究[R].武汉:长江科学院,2015.
[33] 林 鹏, 宁泽宇, 李 明, 等. 特高拱坝通水冷却管网智能联控原型试验研究[J]. 水利学报, 2021, 52(7): 819-828.
PDF(6364 KB)

Accesses

Citation

Detail

Sections
Recommended

/