Variation of Bed-forming Discharge and Its Influencing Factors in the Inner Mongolia Reach of the Yellow River

WANG Ke-zhi, LIU Xiao-min, ZHANG Hong-wu, ZHANG Xiao-hua

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (7) : 8-15.

PDF(7502 KB)
PDF(7502 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (7) : 8-15. DOI: 10.11988/ckyyb.20220317
River-Lake Protection and Regulation

Variation of Bed-forming Discharge and Its Influencing Factors in the Inner Mongolia Reach of the Yellow River

  • WANG Ke-zhi1, LIU Xiao-min1,2, ZHANG Hong-wu3, ZHANG Xiao-hua4
Author information +
History +

Abstract

Bed-forming discharge is an important index characterizing the erosion and deposition of river beds, and is also a key parameter for river management. Based on measured data from 1960 to 2019, we calculated and analyzed the bed-forming discharge at four hydrological stations, namely, Shizuishan, Bayangol, Sanhuhekou, and Toudaoguai, using the improved Makaviev method, bank-full level method, and geomorphology work method. In 1960-1989 and 2010-2019, the bed-forming discharge ranged between 2 100 m3/s and 3 540 m3/s, indicating medium scouring, while in 1990-2009, the bed-forming discharge was 740-1300 m3/s, reflecting severe deposition. In spatial scale, bed-forming discharge was larger in the upper reach stations compared to the lower reach stations. Bed-forming discharge is significantly influenced by the amount of incoming water. When the water inflow during flood season is less than 10.5 billion m3, properly increasing the inflow by jointly dispatching the three reservoirs in Liujiaxia, Longyangxia, and Haibowan during flood season could appropriately augment bed-forming in the Inner Mongolia reach of the Yellow River. Results manifest that the physical meaning of the improved Makaviev method is clear and the calculation results are relatively reasonable.The research results provide important implications for determining the alluvial river bed-forming flow and channel management in the Inner Mongolia reach of the Yellow River.

Key words

bed-forming discharge / riverbed evolution / improved Makaviev method / bank-full level method / gemorphology work method / Inner Mongolia reach of Yellow River

Cite this article

Download Citations
WANG Ke-zhi, LIU Xiao-min, ZHANG Hong-wu, ZHANG Xiao-hua. Variation of Bed-forming Discharge and Its Influencing Factors in the Inner Mongolia Reach of the Yellow River[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(7): 8-15 https://doi.org/10.11988/ckyyb.20220317

References

[1] LI Z,LI Q,CHEN Z,et al.Changes of Riverbeds and Water-Carrying Capacity of the Yellow River Inner Mongolia Section[J].E3S Web of Conferences,2019,81:01004.
[2] 谢鉴衡.河床演变及整治[M].北京: 中国水利水电出版社, 1996:22-24.
[3] TAN G, CHEN P, DENG J, et al. Estimations and Changes of the Dominant Discharge in Three Gorges Reservoir Channel[J]. Arabian Journal of Geosciences, 2019, 12(3): 1-13.
[4] 张红武, 张 清. 黄河下游河道造床流量的计算方法[J]. 泥沙研究, 1994(4): 50-55.
[5] 吉祖稳, 胡春宏, 阎 颐, 等. 多沙河流造床流量研究[J]. 水科学进展, 1994, 5(3): 229-234.
[6] 来志强, 赵连军, 江恩慧, 等. 基于滑动分析法的黄河下游造床流量变化研究[J]. 中南大学学报(自然科学版), 2020, 51(9): 2396-2404.
[7] 沈铭晖, 史红玲, 郭庆超, 等. 黑龙江卡伦山以上河段水沙特性及造床流量研究[J]. 泥沙研究, 2021, 46(4): 21-27.
[8] 石 伟, 王光谦, 邵学军. 流量变化对黄河下游河道演变影响[J]. 水利学报, 2003, 34(5): 74-77, 83.
[9] 陈 栋, 余明辉, 朱勇辉. 三峡建库前后下荆江有效流量研究[J]. 水科学进展, 2018, 29(6): 788-798.
[10]HADADIN N.Variation in Hydraulic Geometry for Stable Versus Incised Streams in the Yazoo River Basin-USA[J]. International Journal of Sediment Research,2017,32(1):121-126.
[11]张 为, 高 宇, 许全喜, 等. 三峡水库运用后长江中下游造床流量变化及其影响因素[J]. 水科学进展, 2018, 29(3): 331-338.
[12]虞邦义, 郁玉锁, 赵 凯. 淮河中游造床流量计算[J]. 河海大学学报(自然科学版), 2010, 38(2): 210-214.
[13]伍悦滨, 贾艳红, 范宝山. 松花江中下游造床流量分析[J]. 哈尔滨工业大学学报, 2008, 40(6): 880-883.
[14]孙昭华, 周炜兴, 周 坤, 等. 江湖水沙输移与长江中下游造床流量的关系[J]. 水利学报, 2021, 52(5): 521-534.
[15]周炜兴, 孙昭华, 周 坤, 等. 三峡水库蓄水前后长江中下游流量频率分布特征及其对洪水造床作用的影响[J]. 湖泊科学, 2022, 34(2): 616-629.
[16]李 超, 全 栋, 张 岩, 等. 黄河(内蒙古段)水沙运动过程特征及演变趋势[J]. 水土保持学报, 2020, 34(1): 41-46, 53.
[17]NASH D B. Effective Sediment-Transporting Discharge from Magnitude-Frequency Analysis[J]. The Journal of Geology, 1994, 102(1): 79-95.
[18]闫金波, 唐庆霞, 邹 涛. 三峡坝下游河道造床流量与水流挟沙力的变化[J]. 长江科学院院报, 2014, 31(2): 114-118.
[19]ROY N G, SINHA R. Effective Discharge for Suspended Sediment Transport of the Ganga River and Its Geomorphic Implication[J]. Geomorphology, 2014, 227: 18-30.
[20]GUAN X, WANG B, ZHANG W, et al. Study on Water Rights Allocation of Irrigation Water Users in Irrigation Districts of the Yellow River Basin[J]. Water, 2021, 13(24): 3538.
[21]姚海芳, 师长兴, 顾畛逵. 气候变化和人类活动对黄河上游十大孔兑水沙过程的影响[J]. 干旱区地理, 2018, 41(3): 472-479.
[22]CROWDER D W, KNAPP H V. Effective Discharge Recurrence Intervals of Illinois Streams[J]. Geomorphology, 2005, 64(3/4): 167-184.
[23]张金良,鲁 俊.黄河内蒙古河段河道冲淤演变与凌情响应机制[J].水科学进展,2021,32(2):192-200.
[24]安催花, 鲁 俊, 钱 裕, 等. 黄河宁蒙河段冲淤时空分布特征与淤积原因[J]. 水利学报, 2018, 49(2): 195-206, 215.
[25]李子文. 造床流量为参数的冲积河流输沙量模型研究及应用[D]. 西安: 西安理工大学, 2018.
PDF(7502 KB)

Accesses

Citation

Detail

Sections
Recommended

/