Hydrogen and Oxygen Isotopes and Hydrochemical Characteristics of Water in Pingzhai Reservoir

XIE Jiang-ting, ZHOU Zhong-fa, WANG Cui, KONG Jie, LI Yong-liu, WEN Chao-cheng

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (7) : 41-49.

PDF(7655 KB)
PDF(7655 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (7) : 41-49. DOI: 10.11988/ckyyb.20220235
Water Environment and Water Ecology

Hydrogen and Oxygen Isotopes and Hydrochemical Characteristics of Water in Pingzhai Reservoir

  • XIE Jiang-ting1,2,3, ZHOU Zhong-fa1,2,3, WANG Cui1,2,3, KONG Jie1,2,3, LI Yong-liu1,2,3, WEN Chao-cheng1,2,3
Author information +
History +

Abstract

To investigate the influence of upstream rivers on the water body in Pingzhai Reservoir, water samples were collected from the inlet river and the reservoir area of Pingzhai Reservoir, as well as in the Sancha River Basin, in January and July 2020. The hydrochemical parameters and stable isotopes of the water samples were analyzed by using mathematical statistics, Durov plots, correlation analysis, and spatial interpolation. The spatiotemporal distribution characteristics and their causes were preliminarily explored. The study show that: (1) The hydrochemical characteristics of the reservoir water are highly influenced by the supply rivers, and the hydrochemical pattern of reservoir water is consistent with that in the basin, mainly HCO-3-Ca2+, with the ion concentration being higher during dry season than wet season. (2) The δD and δ18O of the water were linearly related, and the isotopes exhibit high values in summer and low values in winter. The reservoir water is supplied by precipitation on one hand, and is affected by karst groundwater on the other, thus displaying different seasonal variation characteristics from those of precipitation. (3) The hydrogen and oxygen isotopes of the water in both the reservoir and the basin are mostly distributed along the meteoric water line; however, the slope and interception values are smaller than global meteoric water line and local meteoric water line, indicating strong evaporation fractionation despite dominant supply from precipitation. (4)During wet season, the hydrogen and oxygen isotopes of the basin and the reservoir water are significantly correlated with ion concentration, while in dry season, the water bodies in the lower reaches and the reservoir are notably influenced by precipitation, and the upper reaches by evaporation.

Key words

hydrogen and oxygen isotopes / water chemistry / evaporative fractionation / meteoric precipitation line / Pingzhai Reservoir

Cite this article

Download Citations
XIE Jiang-ting, ZHOU Zhong-fa, WANG Cui, KONG Jie, LI Yong-liu, WEN Chao-cheng. Hydrogen and Oxygen Isotopes and Hydrochemical Characteristics of Water in Pingzhai Reservoir[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(7): 41-49 https://doi.org/10.11988/ckyyb.20220235

References

[1] FERRONSKII V I. Isotope Applications in Hydrology and Hydrogeology[J]. Soviet Atomic Energy, 1968, 24(2): 244-247.
[2] 顾慰祖. 同位素水文学[M]. 北京: 科学出版社, 2011.
[3] HENDERSON A K,SHUMAN B N.Hydrogen and Oxygen Isotopic Compositions of Lake Water in the Western United States[J].GSA Bulletin,2009,121(7/8): 1179-1189.
[4] OHWOGHERE-ASUMA O, AWETO E K, NWANKWOALA H O, et al. Stable Isotopic Composition of Precipitation in a Tropical Rainforest Region of the Niger Delta, Nigeria[J]. Isotopes in Environmental and Health Studies, 2021, 57(1): 94-110.
[5] 宋 洋, 王圣杰, 张明军, 等. 塔里木河流域东部降水稳定同位素特征与水汽来源[J]. 环境科学, 2022, 43(1): 199-209.
[6] 张贵玲,角媛梅,何礼平,等.中国西南地区降水氢氧同位素研究进展与展望[J]. 冰川冻土,2015,37(4):1094-1103.
[7] 章新平,刘晶淼,孙维贞,等.中国西南地区降水中氧稳定同位素比率与相关气象要素之间关系的研究[J]. 中国科学D辑: 地球科学,2006,36(9): 850-859.
[8] 汪敬忠, 吴敬禄, 曾海鳌, 等. 内蒙古河套平原水体同位素及水化学特征[J]. 地球科学与环境学报, 2013, 35(4): 104-112.
[9] 梁丽娥, 李畅游, 史小红, 等. 内蒙古呼伦湖流域地表水与地下水氢氧同位素特征及湖水来源分析[J]. 湿地科学, 2017, 15(3): 385-390.
[10]黄 静, 周忠发, 丁圣君, 等. 双河洞流域氢氧同位素特征及其指示意义[J]. 地球与环境, 2022, 50(4): 516-525.
[11]冯盛楠, 刘兴起, 李华淑. 中国西部湖泊水体δD与δ18O的空间变化特征及其影响因素[J]. 湖泊科学, 2020, 32(4): 1199-1211.
[12]高娟琴, 于 扬, 王登红, 等. 新疆阿勒泰地区地表水体氢氧同位素组成及空间分布特征[J]. 岩矿测试, 2021, 40(3): 397-407.
[13]成玉婷, 李 鹏, 徐国策, 等. 丹江流域氢氧同位素变化特征[J]. 水土保持学报, 2014, 28(5): 129-133.
[14]蒲俊兵, 李建鸿, 吴 夏, 等. 热分层效应控制的水库水体氢氧同位素特征[J]. 水科学进展, 2016, 27(4): 561-568.
[15]但雨生, 周忠发, 李韶慧, 等. 基于Sentinel-2的平寨水库叶绿素a浓度反演[J]. 环境工程, 2020, 38(3): 180-185, 127.
[16]李韶慧, 周忠发, 但雨生, 等. 基于组合赋权贝叶斯模型的平寨水库水质评价[J]. 水土保持通报, 2020, 40(2): 211-217.
[17]张勇荣.基于空间量化模型的人类活动强度对喀斯特筑坝河流水质影响研究[D].贵阳:贵州师范大学,2021.
[18]孔 杰, 周忠发, 但雨生, 等. 基于分形插值模型的平寨水库水体富营养化评价[J]. 灌溉排水学报, 2021, 40(1): 123-130.
[19]秦 玲. 长江支流贵州段河流硫同位素特征及来源解析[D]. 贵阳: 贵州大学, 2017.
[20]张 昱. 石羊河流域不同环境背景下水库水化学特征及影响因素[D]. 兰州: 西北师范大学, 2020.
[21]何明霞, 张 兵, 夏文雪, 等. 天津七里海湿地水化学组成及主要离子来源分析[J]. 环境科学, 2021, 42(2): 776-785.
[22]宋梦媛, 李忠勤, 王飞腾, 等. 新疆吉木乃诸河水体氢氧同位素和水化学特征[J]. 环境化学, 2020, 39(7): 1809-1820.
[23]赵 辉,孟 莹,董维红,等.挠力河流域水体氢氧同位素与水化学特征[J].人民黄河,2017,39(1):73-78.
[24]吴敬禄, 林 琳, 曾海鳌, 等. 长江中下游湖泊水体氧同位素组成[J]. 海洋地质与第四纪地质, 2006, 26(3): 53-56.
[25]CRAIG H. Isotopic Variations in Meteoric Waters[J]. Science, 1961, 133(3465): 1702-1703.
[26]刘进达,赵迎昌,刘恩凯,等.中国大气降水稳定同位素时—空分布规律探讨[J].勘察科学技术,1997(3):34-39.
[27]李亚举,张明军,王圣杰,等.我国大气降水中稳定同位素研究进展[J]. 冰川冻土,2011,33(3):624-633.
[28]张文杰,聂文婷,刘纪根,等.淮河流域大气降水氢氧稳定同位素变化规律及其气候意义[J].长江科学院院报,2022,39(11):21-28.
[29]DANSGAARD W. Stable Isotopes in Precipitation[J]. Tellus, 1964, 16(4): 436-468.
[30]丁悌平, 高建飞, 石国钰, 等. 长江水氢、氧同位素组成的时空变化及其环境意义[J]. 地质学报, 2013, 87(5): 661-676.
[31]胡勇博, 肖 薇, 钱雨妃, 等. 水汽源地和局地蒸发对大气降水氢氧稳定同位素组分的影响[J]. 环境科学, 2019, 40(2): 573-581.
[32]李 广, 章新平, 张新主, 等. 云南腾冲地区大气降水中氢氧稳定同位素特征[J]. 长江流域资源与环境, 2013, 22(11): 1458-1465.
[33]尹 观, 倪师军, 张其春. 氘过量参数及其水文地质学意义: 以四川九寨沟和冶勒水文地质研究为例[J]. 成都理工学院学报, 2001, 28(3): 251-254.
[34]张 金, 韩志伟, 吴 攀, 等. 岩溶流域典型农业区水体氢氧同位素的空间异质性及形成机制[J]. 中国农村水利水电, 2021(3): 134-138.
[35]沈贝贝, 吴敬禄, 吉力力·阿不都外力, 等. 巴尔喀什湖流域水化学和同位素空间分布及环境特征[J]. 环境科学, 2020, 41(1): 173-182.
[36]曾海鳌, 吴敬禄. 塔吉克斯坦水体同位素和水化学特征及成因[J]. 水科学进展, 2013, 24(2): 272-279.
PDF(7655 KB)

Accesses

Citation

Detail

Sections
Recommended

/