Pore size of woven geotextile is a crucial parameter in filter design. The digital image method is a precise and repeatable technique. In this study, we used illuminance to examine the impact of light source distance and brightness on textile image quality. Images were collected under different illuminance levels, and the changes in pore shape, pore size distribution curve, and characteristic pore size of two different textile specifications were analyzed. The actual average pore size of the geotextiles was compared with the fitted straight line of the average pore size under different illuminance levels. Experimental results show that with the increase of illuminance, the measured hole area increases, and the hole shape changes. The pore size distribution curve moves towards the direction of the increase of pore size, and the measured values of characteristic pore size (d95,d50,d30) increase. The average measured pore size presents an increasing trend, which can be expressed as a linear regression equation. The pore size obtained by the digital image method differs from the actual pore size. The optimal illuminance for the two textiles falls near 9 lx. Therefore, the best illuminance should be determined through experiments to reduce error.
Key words
woven geotextile /
illuminance /
digital image method /
characteristic pore size
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] FRISCHKNECHT R, STUCKI M, BÜSSER S, et al. Comparative Life Cycle Assessment of Geosynthetic Versus Conventional Construction Materials[R]. Zurich: Swiss Federal Institute of Technology, 2011.
[2] FRISCHKNECHT R, STUCKI M, BÜSSER S, et al. Comparative Life Cycle Assessment of Geosynthetic Versus Conventional Construction Materials[J]. Ground Engineering, 2012, 45(10): 24-28.
[3] HEERTEN G. Reduction of Climate-Damaging Gases in Geotechnical Engineering Practice Using Geosynthetics[J]. Geotextiles and Geomembranes, 2012, 30: 43-49.
[4] DAMIANS I P, BATHURST R J, ADROGUER E G, et al. Environmental Assessment of Earth Retaining Wall Structures [J]. Journal of Environmental Geotechnics, 2016, 4(6): 415-431.
[5] 包承纲. 土工合成材料应用原理与工程实践[M]. 北京: 中国水利水电出版社, 2008: 7-9.
[6] 《土工合成材料工程应用手册》编写委员会. 土工合成材料工程应用手册[M]. 2版. 北京: 中国建筑工业出版社, 2000: 2-10.
[7] 陈 轮, 庄艳峰, 许 齐, 等. 极限保土状态下的反滤机制试验研究[J]. 岩土力学, 2008, 29(6): 1455-1460.
[8] KOERNER R M. Designing With Geosynthetics[M]. 4th ed. New Jersey: Prentice-Hall Inc, 1998.
[9] GB/T 50290—2014,土工合成材料应用技术规范[S]. 北京: 中国计划出版社, 2015.
[10] 唐 琳, 唐晓武, 曲绍兴. 双向拉应变对有纺织物孔径参数影响的研究[J]. 岩土工程学报, 2016, 38(增刊1): 134-140.
[11] ASTM D4751-12, Standard Test Method for Determining Apparent Opening Size of a Geotextile[S]. USA: American Society for Testing and Materials, 2016.
[12] EN ISO 12956, Geotextile and Geotextile-related Products-Determination of the Characteristic Opening Size[S]. Belgium: European Committee for Standardization, 1999.
[13] CAN/CGSB-148, Method of Testing Geotextiles[S]. Canada: Canadian General Standards Board, 1991.
[14] 庄艳峰, 王 钊. 土工织物的孔径测试方法[J]. 长江科学院院报, 2002, 19(3): 33-36.
[15] 苏树清, 吴伟俊. 土工织物有效孔径测定方法探讨[J]. 岩土工程学报, 2016, 38(增刊1): 156-159.
[16] TANG L, TANG X, LIU Y, et al. Prediction of Pore Size Characteristics of Woven Slit-Film Geotextiles Subjected to Unequal Biaxial Tensile Strains[J]. Geotextiles and Geomembranes, 2013, 38: 43-50.
[17] AYDILEK A, EDIL T. Evaluation of Woven Geotextile Pore Structure Parameters Using Image Analysis[J]. Geotechnical Testing Journal, 2003, 27(1): 11070.
[18] 李富强, 王 钊, 陈 轮, 等. 用数字图像技术测定反滤材料孔径分布曲线[J]. 岩土工程学报, 2007, 29(6): 857-860.
[19] 佘 巍, 唐晓武. 用图像分析法研究有纺土工织物单向受拉时孔径的变化[J]. 岩土工程学报, 2012, 34(8): 1522-1526.
[20] TANG L, TANG X W, LIU Y, et al. Prediction of Pore Size Characteristics of Woven Slit-Film Geotextiles Subjected to Unequal Biaxial Tensile Strains[J]. Geotextiles and Geomembranes, 2020, 48(5): 724-734.
[21] 唐 琳. 拉应变对土工织物孔径特征及反滤性能影响的研究[D]. 杭州: 浙江大学, 2014: 13-16.
[22] 朱航艳. 纺织品光学性能的表征与评价[D]. 上海: 东华大学, 2004: 23-28.
[23] DIERICKX W. Opening Size Determination of Technical Textiles Used in Agricultural Applications[J]. Geotextiles and Geomembranes, 1999, 17(4): 231-245.