One of the most important tasks in the prevention and control of geohazards in large reservoir areas is to identify the amount and location of geohazards on the reservoir banks before impoundment. Many geohazards are typically missed by manual or single-technique survey methods. Interferometry synthetic aperture radar (InSAR) and unmanned aerial vehicle (UAV) optical remote sensing techniques were used to identify geohazards on the reservoir banks in the Xiangbiling-Yezhutang section of the Baihetan reservoir area. Comprehensive remote sensing technology identified 114 geohazards, with 89 and 39 geohazards identified by UAV optical remote sensing and InSAR technology, respectively, an increase of 72 beyond manual investigation. Combining ascending and descending images helps alleviate the geometric distortion of SAR data, increases the visible area of SAR, and improves the effectiveness of geohazard identification results. Due to image precision and timeliness, InSAR technology can detect newly deformed geohazards. But optical remote sensing has a tough time detecting them. In terms of macroscopic features, geohazards that have been deformed in the past can be recognized using both UAV optical remote sensing and InSAR, and observable deformations that occur within the SAR data cycle can also be identified using InSAR technology. Due to data accuracy limits, InSAR technology and optical remote sensing are both successful in recognizing geohazards over broad areas, while InSAR technology is not useful in identifying geohazards over smaller areas. By using multi-source remote sensing including InSAR and UAV optical remote sensing and other technologies, we can obtain information of the surface deformation of geohazards, understand the characteristics of geohazards, overcome the limitations posed by satellite optical remote sensing interpretation, and effectively avoid the missing error of manual investigation or single technical method for geohazard identification in high mountain and canyon areas.
Key words
geohazards /
Interferometry Synthetic Aperture Radar (InSAR) /
Unmanned Aerial Vehicle (UAV) /
multi-source remote sensing /
Baihetan reservoir area
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 冯文凯, 易小宇, 白慧林, 等. 白鹤滩水库初次蓄水对双河段岸坡稳定性的影响预测分析. 科学技术与工程, 2021, 21(1): 346-352.
[2] 冯 振, 吴中海, 曹佳文, 等. 小江断裂带巧家段巨型古滑坡及其工程地质特征. 地球学报, 2019, 40(4): 629-636.
[3] 许 强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警. 武汉大学学报(信息科学版), 2019, 44(7): 957-966.
[4] 李振洪, 宋 闯, 余 琛, 等. 卫星雷达遥感在滑坡灾害探测和监测中的应用: 挑战与对策. 武汉大学学报(信息科学版), 2019, 44(7): 967-979.
[5] 张永双, 刘筱怡, 姚 鑫. 基于InSAR技术的古滑坡复活早期识别方法研究: 以大渡河流域为例. 水利学报, 2020, 51(5): 545-555.
[6] 娄连惠, 刘 强, 谭玉敏. 基于时间序列InSAR的巴东地表形变分析. 长江科学院院报, 2021, 38(5): 149-152, 158.
[7] 姚 鑫, 邓建辉, 刘星洪, 等. 青藏高原泛三江并流区活动性滑坡InSAR初步识别与发育规律分析. 工程科学与技术, 2020, 52(5): 16-37.
[8] 冯文凯, 顿佳伟, 易小宇, 等. 基于SBAS-InSAR技术的金沙江流域沃达村巨型老滑坡形变分析. 工程地质学报, 2020, 28(2): 384-393.
[9] 许 强. 对地质灾害隐患早期识别相关问题的认识与思考. 武汉大学学报(信息科学版), 2020, 45(11): 1651-1659.
[10] 郭培虹, 牛瑞卿. 基于遥感的三峡库区库岸岩土体类型及空间分布研究. 长江科学院院报, 2010, 27(4): 70-73.
[11] CHENG Z, GONG W, TANG H, et al. UAV Photogrammetry-based Remote Sensing and Preliminary Assessment of the Behavior of a Landslide in Guizhou, China. Engineering Geology, 2021, 289: 106172.
[12] 葛大庆, 戴可人, 郭兆成, 等. 重大地质灾害隐患早期识别中综合遥感应用的思考与建议. 武汉大学学报(信息科学版), 2019, 44(7): 949-956.
[13] 白永健, 熊小辉, 铁永波. 川藏铁路雅砻江深切峡谷区滑坡早期识别研究. 灾害学, 2021, 36(3): 109-114.
[14] 刘星洪, 姚 鑫, 於开炳, 等. 川藏高速巴塘—芒康段地质灾害遥感综合早期识别研究. 工程科学与技术, 2020, 52(6): 49-60.
[15] 陈建平, 蔡 伟, 房云峰, 等.金沙江白鹤滩水电站水库工程地质条件专题报告. 杭州:中国水电顾问集团华东勘测设计研究院, 2011.
[16] 梁京涛. 高烈度地震区典型地质灾害遥感早期识别及震后演化特征研究. 成都: 成都理工大学, 2018.
[17] 李 慧. 基于光学遥感和InSAR技术的滑坡早期识别与监测研究. 广州: 广东工业大学, 2020.
[18] NOTTI D, DAVALILLO J C, HERRERA G, et al. Assessment of the Performance of X-Band Satellite Radar Data for Landslide Mapping and Monitoring: Upper Tena Valley Case Study. Natural Hazards and Earth System Sciences, 2010, 10(9): 1865-1875.
[19] NOTTI D, HERRERA G, BIANCHINI S, et al. A Methodology for Improving Landslide PSI Data Analysis. International Journal of Remote Sensing, 2014, 35(6): 2186-2214.
[20] KROPATSCH W G, STROBL D. The Generation of SAR Layover and Shadow Maps from Digital Elevation Models. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(1): 98-107.