Characteristics and Modelling of Adiabatic Temperature Rise Rate of Medium-volumed Fly-Ash Concrete

QUAN Juan-juan, FU Shao-jun, YANG Ru-dong, CHEN Jian, ZHANG Kai-feng

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (4) : 134-140.

PDF(1238 KB)
PDF(1238 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (4) : 134-140. DOI: 10.11988/ckyyb.20211097
HYDRAULIC STRUCTURE AND MATERIAL

Characteristics and Modelling of Adiabatic Temperature Rise Rate of Medium-volumed Fly-Ash Concrete

  • QUAN Juan-juan1, FU Shao-jun2, YANG Ru-dong1, CHEN Jian1, ZHANG Kai-feng3
Author information +
History +

Abstract

Adiabatic temperature rise rate is the key factor affecting the adiabatic temperature rise of concrete. Indoor adiabatic temperature rise test was carried out on fly-ash (content 35%) concrete. The test was controlled with three initial temperatures and five water-binder ratios. The influence rules of initial temperature and water-binder ratio on the adiabatic temperature rise and the rise rate were examined. The standard of dividing three stages of adiabatic temperature rise rate was put forward. A three-stage model of adiabatic temperature rise rate of medium-volumed fly ash concrete was established. The model takes into consideration water-binder ratio, initial temperature and age, and predictes accurately the adiabatic temperature rise rate at each age.The results can provide reference for temperature adiabatic controlling of mass concrete.

Key words

adiabatic temperature rise / rate of adiabatic temperature rise / fly-ash concrete / initial temperature / water-binder ratio / three-stage model

Cite this article

Download Citations
QUAN Juan-juan, FU Shao-jun, YANG Ru-dong, CHEN Jian, ZHANG Kai-feng. Characteristics and Modelling of Adiabatic Temperature Rise Rate of Medium-volumed Fly-Ash Concrete[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(4): 134-140 https://doi.org/10.11988/ckyyb.20211097

References

[1] DL/T 5055—2007,水工混凝土掺用粉煤灰技术规范.北京:中国电力出版社,2007.
[2] 王甲春, 阎培渝.粉煤灰混凝土绝热温升的试验研究.沈阳建筑大学学报(自然科学版),2006(1):118-121.
[3] 王冲,殷吉强,肖波,等.水泥细度与成分对混凝土温升的影响.土木建筑与环境工程,2014,36(1):114-118.
[4] 汪冬冬,周士琼.大体积混凝土绝热温升试验研究.粉煤灰,2006(5):3-6.
[5] 韩建国,张 闰.水胶比和粉煤灰对混凝土绝热温升的影响.混凝土,2009(10):10-12.
[6] 陈嘉健,吴沛林,关宪章.硅粉对混凝土绝热温升的影响.长江科学院院报,2019,36(7):149-152,163.
[7] 陈萍,李兴贵,王有平,等.高性能混凝土绝热温升影响因素的试验研究.浙江理工大学学报,2007(4):461-465.
[8] 阎培渝,郑 峰.水泥基材料的水化动力学模型.硅酸盐学报,2006(5): 555-559.
[9] 张子明,冯树荣,石青春.基于等效时间的混凝土绝热温升.河海大学学报(自然科学版),2004,32(5): 573-577.
[10] 朱伯芳.混凝土绝热温升的新计算模型与反分析.水利发电,2003,29(4):29-32
[11] 刘方琼,杜应吉,赵永兴.多因素影响下混凝土绝热温升计算模型研究.人民长江,2016,47(7):97-101.
[12] 凌道盛,许德胜,沈益源.混凝土中水泥水化反应放热模型及其应用.浙江大学学报(工学版), 2005(11):1695-1698.
[13] 张国新,刘 毅.高掺粉煤灰混凝土的水化热温升组合函数模型及其应用.水力发电学报,2012,31(4):201-206.
[14] 王甲春,阎培渝,韩建国.混凝土绝热温升的实验测试与分析.建筑材料学报,2005(4):446-451.
[15] 胡巧英,杨 杨,江晨晖,等.高强/高性能混凝土的拟绝热温升特性及其对抗压强度的影响.混凝土,2013(11):25-28.
[16] 许 朴,朱岳明,贲能慧.混凝土绝热温升计算模型及其应用.应用基础与工程科学学报,2011,19(2):243-250.
[17] 姚 武,王 伟.混凝土绝热温升的数值模拟.水利学报,2014,45(5):626-630.
[18] DE SCHUTTER G. Applicability of Degree of Hydration Concept and Maturity Method for Thermo-Visco-Elastic Behaviour of Early Age Concrete. Cement & Concrete Composites, 2004, 26: 437-443.
[19] 程 井,魏李威,张玉鑫,等.基于水化度的泵送混凝土温升模型及参数反演.水利水电科技进展,2021,41(2):75-81.
[20] 王国杰,郑建岚.水泥基材料绝热温升曲线特征及速率表达式.建筑材料学报,2014,17(5):875-881.
[21] 巫亚明,姚章虎.粉煤灰混凝土配合比设计及应用.新型建筑材料,2005(7):13-16.
[22] DL/T 5150—2017,水工混凝土试验规程.北京:中国电力出版社,2018.
PDF(1238 KB)

Accesses

Citation

Detail

Sections
Recommended

/