Model of Extracting Remotely-sensed Information of Black and Odorous Water Based on Deep Learning

SHAO Hu-xiang, DING Feng, YANG Jian, ZHENG Zi-cheng

Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (4) : 156-162.

PDF(1898 KB)
PDF(1898 KB)
Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (4) : 156-162. DOI: 10.11988/ckyyb.20210045
INFORMATION TECHNOLOGY APPLICATION

Model of Extracting Remotely-sensed Information of Black and Odorous Water Based on Deep Learning

  • SHAO Hu-xiang1,2,3, DING Feng1,2, YANG Jian3, ZHENG Zi-cheng1,2
Author information +
History +

Abstract

Black and odorous water bodies are widely distributed and seriously damages people’s living environment and the overall beautiful image of the city. With Langfang City in Hebei Province as the research area, we conducted a comparative experimental study on the extraction of remote sensing information of black and odorous water bodies by using PSPNet (Pyramid Scene Parsing Network) and U-Net model based on the multi spectral data and measured data of GF-2 satellite. The normalized difference vegetation index (NDVI) and normalized difference black odorous water index (NDBWI) are calculated based on the visible light band (RGB) and near infrared band (NIR). In view of the common problem of missing detection of small black and odorous water bodies, the module of attention mechanism is introduced to optimize and improve the model. Thus, an improved deep learning model of extracting the remotely-sensed information of black and odorous water bodies is constructed. Results demonstrate that the U-Net model, which inputs RGB+NIR+NDVI+NDBWI six channel remote sensing images in combination with attention mechanism, has the most superior extraction result for black and odorous water bodies, and achieves 0.864 5, 0.868 1 and 0.835 9 in accuracy evaluation indexes F1-srore, MIoU and Recall, respectively.

Key words

black and odorous water / deep learning model / PSPNet model / U-Net network / GF-2 satellite / remotely-sensed information / attention mechanism

Cite this article

Download Citations
SHAO Hu-xiang, DING Feng, YANG Jian, ZHENG Zi-cheng. Model of Extracting Remotely-sensed Information of Black and Odorous Water Based on Deep Learning[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(4): 156-162 https://doi.org/10.11988/ckyyb.20210045

References

[1] 纪 刚. 基于遥感的黑臭水体识别方法研究及应用[D].兰州:兰州交通大学,2017.
[2] HE De-fu, CHEN Rui-rui, ZHU En-hui, et al. Toxicity Bioassays for Water From Black-Odor Rivers in Wenzhou, China[J]. Environmental Science & Pollution Research International, 2015, 22(3):1731-41.
[3] 李广胜,雷利荣.曝气复氧+微生物菌剂修复黑臭河道工程试验[J].环境工程,2018,36(4):34-36,169.
[4] 李晓洁. 沈阳市典型黑臭水体污染物特征研究与遥感识别[D].西安:长安大学,2018.
[5] 丁 凤.基于新型水体指数(NWI)进行水体信息提取的实验研究[J].测绘科学,2009,34(4):155-157.
[6] 靳海霞,潘 健.基于高分二号卫星融合数据的城镇黑臭水体遥感监测研究[J].国土资源科技管理,2017,34(4):107-117.
[7] 曹红业. 中国典型城市黑臭水体光学特性分析及遥感识别模型研究[D].成都:西南交通大学,2017.
[8] 温 爽. 基于GF-2影像的城市黑臭水体遥感识别[D].南京:南京师范大学,2018.
[9] 周 寒.改进SIFT算法的城市河流黑臭水体遥感影像动态识别研究[J].水利规划与设计,2018(12):124-127.
[10] 占玲骅. 基于光学特性的城市黑臭水体识别模型研究[D].上海:华东师范大学,2019.
[11] 姚 月,申 茜,朱 利,等.高分二号的沈阳市黑臭水体遥感识别[J].遥感学报,2019,23(2):230-242.
[12] WEI Li-fei, HUANG Can, WANG Zheng-xiang,et al. Monitoring of Urban Black-Odor Water Based on Nemerow Index and Gradient Boosting Decision Tree Regression Using UAV-Borne Hyperspectral Imagery[J]. Remote Sensing, 2019, 11(20):2402.
[13] 李玲玲,李云梅,吕 恒,等.基于决策树的城市黑臭水体遥感分级[J].环境科学,2020,41(11):5060-5072.
[14] 杨子谦,刘怀庆,吕 恒,等.基于高分影像的城市水体遥感综合分级方法[J].环境学,2021,42(5):2213-2222.
[15] 梁泽毓. 基于深度学习的多源遥感水体信息提取方法及其应用研究[D].合肥:安徽大学,2019.
[16] 张朕通,单玉刚,袁 杰.改进注意力机制的遥感地貌识别算法[J].测绘通报,2020(10):93-96,100.
[17] 邢志华,马文秀.廊坊市河流水质污染特征分析[J].北方环境,2010,22(3):39-41.
[18] 蔡 蕊.廊坊市河渠水生态治理管护工作探析[J].河北水利,2019(7):33,45.
[19] 廖伟伶,黄健盛,丁健刚,等. 我国黑臭水体污染与修复技术研究现状[J]. 长江科学院院报, 2017, 34(11): 153-158.
[20] 丁 凤.一种基于遥感数据快速提取水体信息的新方法[J].遥感技术与应用,2009,24(2):167-171.
[21] 高海亮,顾行发,余 涛,等.星载光学遥感器可见近红外通道辐射定标研究进展[J].遥感信息,2010(4):117-128.
[22] ZHAO H, SHI J, QI X, et al. Pyramid Scene Parsing Network [C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C: IEEE Press, 2017: 62306239.
[23] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional Networks for Biomedical Image Segmentation[C] //Proceedings of International Conference on Medical Image Computing and Computer-assisted Intervention. Munich, Germany. October 5-9, 2015: 234-241.
[24] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional Block Attention Module[C] //Proceedings of the European Conference on Computer Vision (ECCV). Munich: Springer International Publishing, 2018: 3-19.
[25] 孙 萍,胡旭东,张永军.结合注意力机制的深度学习图像目标检测[J].计算机工程与应用,2019,55(17):180-184.
PDF(1898 KB)

Accesses

Citation

Detail

Sections
Recommended

/