Distribution Characteristics and Sources of Heavy Metals in Surface Sediments and Bank Soils of Major Rivers in Source Region of Yangtze River

LIU Min, DENG Wei, ZHAO Liang-yuan, HU Yuan, HUANG Hua-wei, GAO Fei

Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (7) : 143-149.

PDF(4838 KB)
PDF(4838 KB)
Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (7) : 143-149. DOI: 10.11988/ckyyb.20201371
SPECIAL COLUMN OF SCITECH INNOVATION FOR THE REGULATION AND PROTECTION OFCHANGJIANG RIVER: PROCEEDINGS OF THE 2020 ANNUAL MEETING OF CHANGJIANGTECHNOLOGY AND ECONOMY SOCIETY

Distribution Characteristics and Sources of Heavy Metals in Surface Sediments and Bank Soils of Major Rivers in Source Region of Yangtze River

  • LIU Min1,2, DENG Wei1,2, ZHAO Liang-yuan1,2, HU Yuan1,2, HUANG Hua-wei1,2, GAO Fei1,2
Author information +
History +

Abstract

The concentrations of 14 heavy metals in sediments and surrounding soils of major rivers in the source region of the Yangtze River were detected by using inductively coupled plasma mass spectrometry and atomic fluorescence spectrophotometer. The accumulation of heavy metals was evaluated by enrichment factor method, and the distribution characteristics and sources of heavy metals were also analyzed. Results unraveled that except for Ni, Pb, Cd, and Hg, all other heavy metals in river sediments were lower than the background values of sediments in China; however, Hg, Ni, and Cd were enriched in sediments. Compared with other rivers in the source region, Tuotuo River suffered from a relatively high concentration of Cd, Tongtian River was subjected to high concentrations of Hg and Fe, while Chumar River boasted a low concentration of all heavy metals. The heavy metals in sediments were mainly affected by natural factors. In terms of bank soils, the concentrations of Ni, Pb, Cd, and Ti were slightly higher than the background values of soils in Qinghai Province, yet with light enrichment.Compared with the soils along other rivers in the source region, the bank soil along Dangqu River had high concentrations of Cr, Ni, and Cu, and Tuotuo River Pb, Cd, Sb, and Tl, whereas Tongtian River saw a high concentration of V. The heavy metals in bank soils along rivers were mainly affected by natural factors, and also some affected by traffic factors. The research achievements offer fundamental support for the eco-environmental protection in the source region of the Yangtze River.

Key words

source region of Yangtze River / heavy metals / distribution characteristics / enrichment factor method / influence factors / surface sediment / bank soil

Cite this article

Download Citations
LIU Min, DENG Wei, ZHAO Liang-yuan, HU Yuan, HUANG Hua-wei, GAO Fei. Distribution Characteristics and Sources of Heavy Metals in Surface Sediments and Bank Soils of Major Rivers in Source Region of Yangtze River[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(7): 143-149 https://doi.org/10.11988/ckyyb.20201371

References

[1] MILENKOVIC B, STAJIC J M, STOJIC N, et al. Evaluation of Heavy Metals and Radionuclides in Fish and Seafood[J]. Chemosphere, 2019, 229: 324-331.
[2] MOHAMMAD A B, MUZAMMEL H, JHUMA A, et al. Concentration of Heavy Metals in Seafood (Fishes, Shrimp, Lobster and Crabs) and Human Health Assessment in Saint Martin Island, Bangladesh[J]. Ecotoxicology and Environmental Safety, 2018, 159: 153-163.
[3] HONG W J, ZHANG Y F, WU Z H, et al. Health Risk Assessment of Heavy Metals in Freshwater Fish in the Central and Eastern North China[J]. Ecotoxicology and Environmental Safety, 2018, 157: 343-349.
[4] LI Z, MA Z, KUIJP T J, et al. A Review of Soil Heavy Metal Pollution from Mines in China: Pollution and Health Risk Assessment[J]. Science of the Total Environment, 2014, 468/469: 843-853.
[5] HEIM S, SCHWARZBAUER J. Pollution History Revealed by Sedimentary Records: A Review[J]. Environmental Chemistry Letters, 2013, 11(3): 255-270.
[6] JE C H, HAYES D F, KIM K S. Simulation of Resuspended Sediments Resulting from Dredging Operations by a Numerical Flocculent Transport Model[J]. Chemosphere, 2007, 70(2): 187-195.
[7] XIE M, JARRETT B A, SILVA-CADOUX D C,et al. Coupled Effects of Hydrodynamics and Biogeochemistry on Zn Mobility and Speciation in Highly Contaminated Sediments[J]. Environmental Science and Technology, 2015, 49(9): 5346-5353.
[8] TACK F M, CALLEWAERT O W, VERLOO M G. Metal Solubility as a Function of Ph in a Contaminated Dredged Sediment Affected by Oxidation[J]. Environmental Pollution, 1996, 91(2): 199-208.
[9] ZHENG N, WANG Q C, LIANG ZZ, et al. Characterization of Heavy Metal Concentrations in the Sediments of Three Freshwater Rivers in Huludao City, Northeast China[J]. Environmental Pollution, 2008, 154: 135-142.
[10] XIE M, ALSINA M A, YUEN J, et al. Effects of Resuspension on the Mobility and Chemical Speciation of Zinc in Contaminated Sediments[J]. Journal of Hazard Materials, 2019, 364: 300-308.
[11] 徐争启, 滕彦国, 庹先国, 等. 攀枝花市水系沉积物与土壤中重金属的地球化学特征比较[J]. 生态环境学报, 2007, 16(3): 739-743.
[12] 王志英,刘 云,王建立,等. 城郊流域河岸带土壤与河流沉积物的重金属污染及分布特征:以温榆河昌平段为例[J]. 农业环境科学学报,2013,32(4):783-791.
[13] ZHAO L, LI W, LIN L, et al. Field Investigation on River Hydrochemical Characteristics and Larval and Juvenile Fish in the Source Region of the Yangtze River[J]. Water, 2019, 11: 1342.
[14] 黄 茁, 刘玥晓, 赵伟华, 等. 长江源区近年水质时空分布特征探析[J]. 长江科学院院报, 2016, 33(7):46-50,67.
[15] 成杭新, 刘英汉, 聂海峰, 等. 长江源区Cd地球化学省与主要水系的Cd输出通量[J]. 地学前缘, 2008, 15(5): 203-211.
[16] 卓海华, 刘云兵, 郑红艳, 等. 长江源水环境调查分析[J]. 人民长江, 2012, 43(12): 23-26.
[17] 王冠星, 闫学东, 张 凡, 等. 青藏高原路侧土壤重金属含量分布规律及影响因素研究[J]. 环境科学学报, 2014, 34(2): 431-438.
[18] 杨 安,王艺涵,胡 健,等.青藏高原表土重金属污染评价与来源解析[J]. 环境科学,2020,41(2):886-894.
[19] 吴永盛, 徐金龙, 庄姜云, 等. 微波消解-电感耦合等离子体质谱(ICP-MS)法同时测定土壤中8种重金属元素[J]. 中国无机分析化学, 2017, 7(4): 16-20.
[20] 刘 敏, 雷 菁, 林 莉, 等. 基于MP-AES的复杂介质中金属元素分析[J]. 人民长江, 2018, 49(增刊1):43-46.
[21] 梁淑轩, 王 欣, 吴 虹, 等. 微波消解/ICP-MS测定水系沉积物中的9种重金属元素[J]. 光谱学与光谱分析, 2012, 32(3): 809-812.
[22] GB/T 22105.1—2008,土壤质量 总汞、总砷、总铅的测定 原子荧光法 第1部分: 土壤中总汞的测定[S]. 北京: 中国标准出版社, 2008.
[23] 张秀芝, 鲍征宇, 唐俊红. 富集因子在环境地球化学重金属污染评价中的应用[J]. 地质科技情报, 2006, 25(1): 65-72.
[24] 王 岚, 王亚平 许春雪, 等. 长江水系表层沉积物重金属污染特征及生态风险性评价[J]. 环境科学, 2012, 33(8): 2599-2606.
[25] LOSKA K, WIECHULA D, KORUS I. Metal Contamination of Farming Soils Affected by Industry[J]. Environment International, 2004, 30(2): 159-165.
[26] 史长义, 梁 萌, 冯 斌. 中国水系沉积物39种元素系列背景值[J]. 地球科学, 2016, 41(2): 234-251.
[27] 中国环境监测总站. 中国土壤元素背景值[M]. 北京:中国环境科学出版社, 1990.
[28] GB 15618—2018,土壤环境质量:农用地土壤污染风险管控标准(试行)[S]. 北京: 中国标准出版社, 2018.
[29] WILDING L P. Spatial Variability: Its Documentation, Accommodation and Implication to Soil Surveys[C]//Proceedings of Workshop of Soil Spatial Variability. Las Vegas, November 30 - December 1, 1984: 166-194.
[30] 任天祥, 伍宗华, 羌荣生. 区域化探异常筛选与查证的方法技术[M]. 北京: 地质出版社, 1998: 1-138.
[31] 尚 桢. 黄河上游典型区域底泥重金属的含量分析与污染评价[D]. 兰州: 兰州交通大学, 2016.
[32] 刘梦琳, 冯精兰, 刘 群, 等. 淮河上游表层沉积物中重金属的赋存形态及其生态风险[J]. 环境化学, 2014, 33(7): 1235-1236.
[33] 徐 军, 郝立波, 赵新运, 等. 松花江上游表层沉积物中重金属元素时空分布特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 854-862.
[34] 陈鹏飞, 李潮流, 康世昌, 等. 雅鲁藏布江表层沉积物地球化学元素研究[J]. 地球化学, 2012, 41(4): 387-392.
[35] 杨思林. 珠江上游沉积物与土壤金属元素地球化学特征研究[D]. 昆明:昆明理工大学, 2014.
[36] 孙春叶. 河南省淮河上游平原区土壤地球化学特征研究[D]. 荆州:长江大学, 2013.
[37] 李春芳, 王 菲, 曹文涛, 等. 龙口市污水灌溉区农田重金属来源、空间分布及污染评价[J]. 环境科学, 2017, 38(3): 1018-1027.
[38] KEZHUN L Z . Background Values of Trace Elements in the Source Area of the Yangtze River[J]. Science of the Total Environment, 1992, 125: 391-404.
[39] WU J, DUAN D P, LU J,et al. Inorganic Pollution around the Qinghai-Tibet Plateau: An Overview of the Current Observations[J]. Science of the Total Environment, 2016, 550: 628-636.
PDF(4838 KB)

Accesses

Citation

Detail

Sections
Recommended

/