Formation of Shear Zone and Evolution of Related Mesostructure in Rockfill under High Confining Pressure

WU Xiang-hao, LIANG Bing-han, HUA Xiang-yu

Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (4) : 128-134.

PDF(2508 KB)
PDF(2508 KB)
Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (4) : 128-134. DOI: 10.11988/ckyyb.20201299
ROCK SOIL ENGINEERING

Formation of Shear Zone and Evolution of Related Mesostructure in Rockfill under High Confining Pressure

  • WU Xiang-hao, LIANG Bing-han, HUA Xiang-yu
Author information +
History +

Abstract

In order to study the formation of shear zone and the evolution of mesostructures in rockfill under high confining pressure, we constructed three different shapes of broken particle clusters by using self-designed program, and randomly generated two-dimensional particle flow samples for biaxial compression test. Results show that when axial strain is 6%, the volume shrinkage of specimen changes to volume expansion; when axial strain reaches 10%, the structure changes in the sample. The formation of shear zone can be clearly reflected by the evolution of micro-structures such as rotation, movement, fragmentation and porosity of particle clusters in the sample; when axial strain reaches 10%, the particle clusters with large rotation amplitude and serious breakage and the region with large porosity both present asymmetric X-shaped distribution, and the X-shaped contour gradually becomes clear.

Key words

rockfill / high confining pressure / particle flow / shear zone / mesostructure

Cite this article

Download Citations
WU Xiang-hao, LIANG Bing-han, HUA Xiang-yu. Formation of Shear Zone and Evolution of Related Mesostructure in Rockfill under High Confining Pressure[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(4): 128-134 https://doi.org/10.11988/ckyyb.20201299

References

[1] WANG Q, LADE P V. Shear Banding in True Triaxial Tests and Its Effect on Failure in Sand[J]. Engineering Mechanics, 2001, 127(8): 754-761.
[2] SUN D A, HUANG W X, YAO Y P.An Experimental Study of Failure and Softening in Sand under Three-dimensional Stress Condition[J]. Granular Matter, 2008, 10(3): 187-117.
[3] SADREKARIMI A, OLSON S M. Shear Band Formation Observed in Ring Shear Tests on Sandy Soils[J]. Geotechnical and Geoenvironmental Engineering, 2010, 136(2): 366-375.
[4] ALSHIBLI K A,BATISTE S N,STURE S. Strain Localization in Sand: Plane Strain versus Triaxial Compression[J]. Geotechnical and Geoenvironmental Engineering, 2003, 129(6): 483-494.
[5] RÖCHTER L,KÖNIG D,SCHANZ T,et al. Shear Banding and Strain Softening In Plane Strain Extension: Physical Modelling[J]. Granular Matter,2010,12(3):287-301.
[6] 李 蓓,赵锡宏,董建国.上海粘土剪切带倾角试验研究[J].岩土力学,2020,23(4):423-427.
[7] HALL S A, LENOIR N, VIGGIANI G, et al. Strain Localisation in Sand under Triaxial Loading: Characterisation by X-Ray Micro-tomography and 3D Digital Image Correlation[C] //Proceedings of the First International Symposium on Computational Geomechanics, Juan-les-Pins, France. April 29-May 1, 2009: 1-9.
[8] WHITE D J, TAKE W A, BOLTON M D. Soil Deformation Measurement Using Particle Image Velocimetry (PIV) and Photogrammetry[J]. Geotechnique, 2003, 53(7): 619-631.
[9] 李宏儒, 胡再强, 冯 飞, 等. 结构性黄土二元介质本构模型在局部化剪切带中的应用[J]. 岩土力学,2012,33(9):2803-2810.
[10] 陈生水, 傅中志, 韩华强, 等. 一个考虑颗粒破碎的堆石料弹塑性本构模型[J]. 岩土工程学报, 2011, 33(10): 1489-1495.
[11] 沈珠江. 结构性黏土的弹塑性损伤模型[J]. 岩土工程学报, 1993, 15(3): 21-28.
[12] 钱建固, 黄茂松. 土体变形分叉的非共轴理论[J]. 岩土工程学报, 2004, 26(6): 777-781.
[13] ROSCOC K H. The Influence of Strain in Soil Mechanics[J]. Geotecnique, 1970, 20(2): 129-70.
[14] 周 健,池 永.土的工程力学性质的颗粒流模拟[J]. 固体力学学报, 2004, 25(4): 377-382.
[15] 刘 君, 刘福海, 孔宪京. 考虑破碎的堆石料颗粒流数值模拟[J]. 岩土力学, 2008, 29(增刊1): 107-112.
[16] 孙德安,甄文战.不同应力路径下剪切带的数值模拟[J]. 岩土力学, 2010, 31(7): 2253-2258.
[17] 张 强, 汪小刚, 赵宇飞, 等. 基于围压柔性加载的土石混合体大型三轴试验离散元模拟研究[J]. 岩土工程学报, 2019, 41(8): 1545-1554.
[18] ZHOU W, YANG L, MA G, et al. DEM Modeling of Shear Bands in Crushable and Irregularly Shaped Granular Materials[J]. Granular Matter, 2017, 19(2): 25.
[19] GU Xiao-qiang, Huang Mao-song, QIAN Jian-gu. Discrete Element Modeling of Shear Band in Granular Material[J]. Theoretical and Applied Fracture Mechanics, 2014, 72: 37-49.
[20] MA Gang, ZHOU Wei, CHANG Xiao-lin, et al. Formation of Shear Bands in Crushable and Irregularly Shaped Granular Materials and the Associated Microstructural Evolution[J]. Powder Technology,2016, 301: 118-130.
[21] 周 伟, 常晓林, 马 刚. 高堆石坝变形宏细观机制与数值模拟[M]. 北京: 科学出版社, 2016.
[22] POTYONDY D O, CUNDALL P A. ABonded-particle Model for Rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364.
[23] WANG J, YAN H. On the Role of Particle Breakage in the Shear Failure Behavior of Granular Soils by DEM[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(8): 832-854.
[24] LIU Y, LIU H, MAO H. DEM Investigation of the Effect of Intermediate Principle Stress on Particle Breakage of Granular Materials[J]. Computers & Geotechnics, 2017, 84: 58-67.
[25] JIANG M J, KONRAD J M, LEROUEIL S. An Efficient Technique for Generating Homogeneous Specimens for DEM Studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597.
[26] 周 健, 王家全, 曾 远,等. 土坡稳定分析的颗粒流模拟[J]. 岩土力学, 2009, 30(1):86-90.
[27] 刘海涛,程晓辉. 粗粒土尺寸效应的离散元分析[J]. 岩土力学,2009,30(8):287-292.
[28] 周伦伦, 楚锡华, 徐远杰. 基于离散元法的真三轴应力状态下砂土破碎行为研究[J]. 岩土工程学报, 2017, 39(5): 839-847.
[29] BELHEINE N, PLASSIARD J P, DONZÉ F V,et al. Numerical Simulation of Drained Triaxial Test Using 3D Discrete Element Modeling[J]. Computers and Geotechnics, 2008, 36(1/2): 320-331.
[30] 常 在, 杨 军, 程晓辉. 砂土强度和剪胀性的颗粒力学分析 [J]. 工程力学, 2010, 27(4): 95-104.
[31] 刘恩龙, 陈生水, 李国英, 等. 堆石料的临界状态与考虑颗粒破碎的本构模型 [J]. 岩土力学, 2011, 32(增刊2): 148-154.
[32] BELHEINE N,PLASSIARD J P,DONZÉ F V,et al.Numerical Simulation of Drained Triaxial Test Using 3D Discrete Element Modeling[J]. Computers and Geotechnics, 2008, 36(1/2):320-331.
PDF(2508 KB)

Accesses

Citation

Detail

Sections
Recommended

/