In frozen earth areas of North China, lining and insulation measures are usually adopted to prevent seepage and frost heave in many irrigation channels, thereby reducing water loss. In this research, the effects of three different anti-freezing measures of channel lining for the irrigation channels in Nongshi Division of Altay, Xinjiang, were comparatively studied in terms of material acquisition and construction. The constitutive models of three lining materials, namely, concrete, fly ash solidified by HAS curing agent, and polystyrene foam board (EPS board), were established. The anti-frost-heaving effects of the three lining materials were analyzed via temperature-stress coupled simulation in ABAQUS. Results reveal that the three measures are capable of reducing the frost heave deformation of channels. Compared with concrete lining, fly ash solidified by HAS and EPS foam board linings provide with better effects, of which the EPS foam board performs the best by cutting the maximum normal frost heave displacement by 54%, normal frost heave force by 74%, and tangential frost force by 83%. EPS foam board also facilitates the uniform distribution of stress and displacement, and consequently, refrains from stress concentration. The anti-frost-heaving effect of polystyrene board is the most superior, followed by that of fly ash solidified by HAS, and concrete lining in sequence. Nevertheless, fly ash solidified by HAS could be a potential material of channel lining in highly cold areas like Xinjiang as fly ash can be acquired locally.
Key words
channel lining /
anti-frost-heaving /
constitutive model /
HAS curing agent /
fly ash /
EPS board /
concrete lining
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] LI Zhuo, LIU Si-hong, FENG You-ting, et al. Numerical Study on the Effect of Frost Heave Prevention with Different Canal Lining Structures in Seasonally Frozen Ground Regions[J]. Cold Regions Science & Technology, 2013, 85(1): 242-249.
[2] WANG En-liang, FU Xing-chao. Simulating and Validating the Effects of Slope Frost Heaing on Canal Bed Saturated Soil Using Coupled Heat -Moisture-Deformation Model[J]. International Journal of Agriculture & Biological Engineering, 2017, 10(2): 184-193.
[3] 郝巨涛,刘增宏,汪正兴.我国沥青混凝土防渗工程技术的发展与展望[J].水利学报,2018,9(9):1137-1147.
[4] 王正中,陈立杰,牟声远,等.聚合物涂层与沥青混凝土衬砌渠道冻胀模拟[J].辽宁工程技术大学学报:自然科学版, 2009,28(6):961-964.
[5] MO Teng-fei, LOU Zong-ke. Numerical Simulation of Frost Heave of Concrete Lining Trapezoidal Channel under an Open System[J]. Water, 2020, 12(335): 1-13.
[6] KAHLOWN M A, KEMPER W D. Reducing Water Loses from Channels Using Linings: Costs and Benefits in Pakistan[J]. Agricultural Water Management, 2005, 74: 57-76.
[7] 葛建锐,王正中,牛永红,等.冰盖输水衬砌渠道冰冻破坏统一力学模型[J].农业工程学报,2020,36(1):90-98.
[8] 刘 倩,申向东,薛慧君,等.模袋混凝土衬砌渠道冻胀破坏力学模型及应用[J].排灌机械工程学报,2019,37(12):1072-1076,1099.
[9] 刘 月,王正中,李甲林,等.景电工程干渠块石换填措施抗冻融效果评价[J].人民黄河,2018,40(4):147-156.
[10]王文杰,王正中,李 爽,等.季节冻土区衬砌渠道换填措施防冻胀数值模拟[J].干旱地区农业研究,2013,31(6):83-89.
[11]涂 晋. HAS固化粉煤灰作渠道衬砌材料的应用试验研究[D].武汉:武汉大学,2005.
[12]付美英,赵宇辉.土壤固化剂在骨干渠道衬砌中的防冻胀效果[J].内蒙古水利,2011(3):44-46.
[13]张瑞荣,侯浩波,贾海红.HAS固化粉煤灰、石屑作为渠道衬砌材料的研究与应用[J].中国资源综合利用,2003(3):21-23.
[14]袁维忠, 吴新金.HAS固化剂固化山楂做渠道衬砌材料技术的应用[J].江西水利科技,2011,37(1):34-35,39.
[15]吉 晔,张邵强,沈莹莹.北方不同地域混凝土衬砌渠道聚苯乙烯泡沫板保温防冻胀适宜厚度分析[J].水利与建筑工程学报,2018,16(5):168-171.
[16]王正中,沙际德,蒋允静,等.正交各向异性冻土与建筑物相互作用的非线性有限元分析[J].土木工程学报,1999, 32 (3 ): 55-60.
[17]李甲林,王正中.渠道衬砌破坏力学模型及防冻胀结构[M].北京:中国水利水电出版社,2013.
[18]李 爽,王正中,高兰兰,等.考虑混凝土衬砌与冻土接触非线性的渠道冻胀数值模拟[J].水利学报,2014,45(4):497-503.
[19]中华人民共和国行业标准编写组. GB 50010—2010,混凝土结构设计规范[S].北京:中国建筑工业出版社,2010.
[20]涂 晋,侯浩波,张善科.粉煤灰作衬砌材料的研究与应用[J].电力环境保护,2005,21(1):43-45.
[21]凌建明,吴 征,叶定威,等.压缩条件下发泡聚苯乙烯的本构关系和疲劳特性[J].同济大学学报,2003,32(1):21-25.
[22]HORVATH J S. Concepts for Cellular Geosynthetics Standards with an Example for EPS—Block Geofoam as Lightweight Full for Roads[R]. New York: Manhatan College Center for Geotechnology, 2011.
[23]郭 瑞,王正中,牛永红,等.基于TCR传热原理的混凝土复合保温衬砌渠道防冻胀效果研究[J].农业工程学报,2015,31(20):101-106.
[24]刘晓燕,赵 军,石 成,等.土壤恒温层温度及深度研究[J].太阳能学报,2007,28(5): 494-498.
[25]牟灵泉.地道风降温计算与应用[M].北京:中国建筑工业出版社,1982.
[26]石 娇.考虑渠基土水热力三场耦合的衬砌渠道冻胀数值模拟研究[D].杨凌:西北农林科技大学,2015.
[27]刘卫东,田 波,侯子义.混凝土导热系数试验研究[J].中外公路,2012,32(1):226-229.
[28]赵志方,陈建平,王卫伦.不同掺量粉煤灰混凝土热膨胀系数的确定[J].长江科学院院报,2018,35(12):143-147.
[29]郭 靖.渠道衬砌聚苯乙烯保温板防冻胀效果数值模拟[D].杨凌:西北农林科技大学,2013.
[30]安 鹏,邢义川,张爱军.基于部分保温法的渠道保温板厚度计算与数值模拟[J].农业工程学报,2013,29(17):54-62.
[31]DUSKOV M.Materials Research on EPS 20 and EPS 15 under Representative Conditions in Pavement Structures[J].Geo-textiles and Geomembrane,1997(15):147-181.
[32]程满金,步丰湖,王俊英,等.土壤固化剂新材料在衬砌渠道中的应用研究[J].节水灌溉,2010(4):33-36.
[33]王 慧,朱步祥,朱步刚.渠道防渗新材料-土壤固化剂及其应用[J].节水灌溉,2000(6):35,37-38.