Key Technologies of Sediment Regulation for Cascade Reservoirs in Yangtze River Basin

LU Jin-you, ZHAO Jin-qiong

Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (1) : 1-7.

PDF(3909 KB)
PDF(3909 KB)
Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (1) : 1-7. DOI: 10.11988/ckyyb.20201194
SPECIAL CONTRIBUTION

Key Technologies of Sediment Regulation for Cascade Reservoirs in Yangtze River Basin

  • LU Jin-you1, ZHAO Jin-qiong1,2
Author information +
History +

Abstract

Combining flow and sediment dynamics with optimization theory, we developed a technology of sediment control for cascade reservoirs integrating simulation module, dispatching module and decision module.Firstly, we improved the coefficient of saturation recovery and the sediment carrying capacity of non-uniform sediment, and on this basis built the simulation module of water/sediment transport in rivers, lakes, and reservoirs by integrating the water/sediment models for cascade reservoirs in upstream Yangtze River, for complex river-lake network in mid-and downstream Yangtze River and the 2D model for typical reaches. Subsequently, we constructed the objective function of sediment’s optimal regulation in consideration of flood control, power generation, navigation, and long-term use, and further established the optimal sediment-dispatching model. Furthermore we employed the BP neural network in association with the pre-constructed sediment information base to fit the prediction for the sedimentation and scouring, and present an improved grey-target evaluation method based on non-inferior solution set. Taking the Three Gorges Reservoir as an example, we finally put forward the dynamic operation scheme of “storing clear water and discharging muddy water” in flood season and the long-term staged sediment control strategy.

Key words

sediment regulation / cascade reservoirs / sediment movement / long-term use / multi-objective water-sediment mathematical model / storing clear water and discharging muddy water / Yangtze River basin

Cite this article

Download Citations
LU Jin-you, ZHAO Jin-qiong. Key Technologies of Sediment Regulation for Cascade Reservoirs in Yangtze River Basin[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(1): 1-7 https://doi.org/10.11988/ckyyb.20201194

References

[1] 韩其为, 杨小庆. 我国水库泥沙淤积研究综述[J]. 中国水利水电科学研究院学报, 2003, 1(3):169-178.
[2] 胡春宏. 从三门峡到三峡:我国工程泥沙学科的发展与思考[J]. 泥沙研究, 2019, 44(2):1-10.
[3] 张超然, 尹庭伟. 科学研究在三峡工程建设中的应用[J]. 科技进步与对策, 2004(2):8-11.
[4] 水利电力部科学技术司. 三峡工程泥沙问题研究成果汇编(160~180m蓄水位方案) [R]. 北京: 水利电力部科学技术司, 1988.
[5] 潘庆燊, 陈济生, 黄 悦, 等. 三峡工程泥沙问题研究进展[M]. 北京: 中国水利水电出版社, 2014.
[6] 韩其为. 三峡工程论证及可行性研究阶段泥沙研究工作的几点进展[J]. 水利水电技术, 2014(9): 1-5.
[7] 胡春宏,方春明.三峡工程泥沙问题解决途径与运行效果研究[J].中国科学:技术科学,2017,47(8):832-844.
[8] 金兴平, 许全喜. 长江上游水库群联合调度中的泥沙问题[J]. 人民长江, 2018, 49(3): 1-8.
[9] 彭 杨, 纪昌明, 刘 方. 梯级水库水沙联合优化调度多目标决策模型及应用[J]. 水利学报, 2013, 44(11): 1272-1277.
[10]彭 勇, 梁国华, 周惠成. 基于改进微粒群算法的梯级水库群优化调度[J]. 水利发电学报, 2009, 28(4): 49-55 .
[11]张玉新, 冯尚友. 水库水沙联调的多目标规划模型及其应用研究[J]. 水利学报, 1988(9):19-27.
[12]杜殿勖, 朱厚生. 三门峡水库水沙综合调节优化调度运用的研究[J]. 水力发电学报, 1992(2):12-24.
[13]张金良. 黄河水库水沙联合调度问题研究[D]. 天津:天津大学, 2004.
[14]胡明罡. 多沙河流水库电站优化调度研究[D].天津:天津大学, 2004.
[15]刘媛媛. 多沙河流水库多目标优化调度研究[D]. 天津:天津大学, 2005.
[16]NICKLOW J W,MAYS L W.Operation of Multiple Reservoir Systems to Control Sedimentation in Rivers and Reservoirs[C]//Proceedings of the 29th Annual Water Resources Planning and Management Conference. Tempe,Arizona,United States. June 6-9,1999: 1-11.Doi:10.1061/40430(1999)105:1-11.
[17]晋 健, 马光文, 吕金波. 大渡河瀑布沟以下梯级电站发电及水沙联合调度方案研究[J]. 水力发电学报, 2011, 30(6):210-214,236
[18]谈广鸣, 郜国明, 王远见, 等. 基于水库-河道耦合关系的水库水沙联合调度模型研究与应用[J]. 水利学报, 2018, 49(7): 795-801.
[19]长江科学院. 三峡水库及上游区间产沙和三库联合优化调度条件下三峡水库及坝下游泥沙冲淤研究报告[R]. 武汉: 长江科学院, 2020.
[20]徐 涛, 王 敏, 周 曼, 等. 三峡水库不同调控方式对坝下游河道演变影响[J]. 人民长江, 2016, 47(24): 6-11.
[21]赵瑾琼. 水库变动回水区分汊河道河型转化影响因素分析[J]. 人民长江, 2013, 44(17): 52-55.
[22]RANI D, MOREIRA M M. Simulation-Optimization Modeling: A Survey and Potential Application in Reservoir Systems Operation[J]. Water Resources Management, 2010, 24: 1107-1138.
[23]肖 杨, 彭 杨, 王太伟. 基于遗传算法与神经网络的水库水沙联合优化调度模型[J]. 水利水电科技进展, 2013, 33(2): 9-13.
[24]刘媛媛, 练继建.遗传算法改进的BP神经网络对汛期三门峡水库泥沙冲淤量的计算[J].水力发电学报, 2005,24(4): 110-113.
[25]黄仁勇, 王 敏, 张细兵, 等. 三峡水库汛期“蓄清排浑”动态运用方式初探[J]. 长江科学院院报, 2018, 35(7) : 9-13.
PDF(3909 KB)

Accesses

Citation

Detail

Sections
Recommended

/