Water and Sediment Accumulation in Yarkant River Based on Copula Function

JU Jin-hao, PENG Liang, HE Ying, NAZAKAT Tohti, WEI Ren-juan

Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (2) : 7-13.

PDF(1786 KB)
PDF(1786 KB)
Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (2) : 7-13. DOI: 10.11988/ckyyb.20200950
RIVER-LAKE PROTECTION AND REGULATION

Water and Sediment Accumulation in Yarkant River Based on Copula Function

  • JU Jin-hao1, PENG Liang1,2, HE Ying1,2, NAZAKAT Tohti1, WEI Ren-juan3,4
Author information +
History +

Abstract

To obtain the development law of runoff and sediment relations in the Yarkant River Basin, the variation point of runoff and sediment relation was diagnosed using the method of modulus coefficient, moving t-test, and moving correlation coefficient based on the data of runoff and sediment of the Kagun and Langan hydrologic stations. The two-dimensional joint distribution model of runoff and sediment was constructed by Copula function. Results manifest that: 1) The relationship between runoff and sediment changed dramatically around 1993. 2) The correlation between runoff and sediment in 1993-2015 was stronger than that in 1954-1992. 3) In different periods, the frequency of synchronous water and sediment was always larger than that of asynchronous water and sediment. The probability of “high water and low sediment” as well as “low water and high sediment” was both zero. 4) The frequency of synchronous water and sediment reached 58.97% from 1954 to 1992, and 82.61% from 1993 to 2015, and ever increased after 1993. The research conclusions offer theoretical basis for the operation and management of water resource in the Yarkant River Basin.

Key words

runoff-sediment relationsship / Copula function / runoff / sediment / Yarkant River

Cite this article

Download Citations
JU Jin-hao, PENG Liang, HE Ying, NAZAKAT Tohti, WEI Ren-juan. Water and Sediment Accumulation in Yarkant River Based on Copula Function[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(2): 7-13 https://doi.org/10.11988/ckyyb.20200950

References

[1] HU Jin-fei, ZHAO Guang-ju, MU Xing-min, et al. Effect of Soil and Water Conservation Measures on Regime-based Suspended Sediment Load during Floods[J]. Sustainable Cities and Society, 2020, 55: 102044.
[2] NAMSAI M, BIDORN B, CHANYOTHA S, et al. Sediment Dynamics and Temporal Variation of Runoff in the Yom River, Thailand[J]. International Journal of Sediment Research, 2020, 35(4): 365-376.
[3] 关颖慧. 长江流域极端气候变化及其未来趋势预测[D].杨凌:西北农林科技大学,2015.
[4] ZHAO Y,CAO W,HU C,et al. Analysis of Changes in Characteristics of Flood and Sediment Yield in Typical Basins of the Yellow River under Extreme Rainfall Events[J]. Catena, 2019, 177: 31-40.
[5] KONG D, MIAO C, WU J, et al. Impact Assessment of Climate Change and Human Activities on Net Runoff in the Yellow River Basin from 1951 to 2012[J]. Ecological Engineering, 2016, 91: 566-573.
[6] 徐金鑫, 丁文峰, 林庆明. 丹江流域水沙变化特征分析[J]. 长江流域资源与环境, 2019, 28(8):1956-1964.
[7] 陈青青, 陈超群, 杨志勇, 等. 阿克苏河径流演变及其对气候变化的响应[J]. 水资源与水工程学报, 2017, 28(1):88-93,99.
[8] 张雪琪, 满苏尔·沙比提, 刘海涛, 等. 1957—2015 年叶尔羌河流域气候变化特征及其径流响应[J]. 干旱区研究, 2019, 36(1):58-66.
[9] 王 莺, 王劲松, 武 明, 等. 土地利用和气候变化对嘉陵江流域水文特征的影响[J]. 水土保持研究, 2019, 26(1):135-142.
[10]吴慧凤, 陈 莹. 晋江西溪流域土地利用变化的输沙响应[J]. 水土保持通报, 2019, 39(4):48-53.
[11]REN Zong-ping, FENG Zhao-hong, LI Peng, et al. Response of Runoff and Sediment Yield from Climate Change in the Yanhe Watershed, China[J]. Journal of Coastal Research,2017,80, doi: 10.2112/SI80-006.1.
[12]NELSON R B. An Introduction to Copulas[M]. New York: Springer, 1999.
[13]周念清, 赵 露, 沈新平. 基于Copula函数的洞庭湖流域水沙丰枯遭遇频率分析[J]. 地理科学, 2014, 34(2): 242-248.
[14]郭爱军, 黄 强, 畅建霞, 等. 基于Copula函数的泾河流域水沙关系演变特征分析[J]. 自然资源学报, 2015, 30(4): 673-683.
[15]孙 妍, 王秀茹, 王铭浩, 等. 渠村引黄口流域水沙情势变化和丰枯遭遇分析[J]. 北京师范大学学报:自然科学版, 2019, 55(4): 489-496.
[16]马川惠, 黄 强, 郭爱军. 泾河流域水沙联合分布特征分析及其不确定性评估[J]. 水利学报, 2019, 50(2): 273-282.
[17]姚曼飞, 党素珍, 孟美丽, 等.基于Copula函数的泾河流域水沙丰枯遭遇频率分析[J].水土保持研究, 2019, 26(1): 192-196,202.
[18]冯加远. 叶尔羌河流域水土环境演变影响因素分析及其防控对策研究[D].西安:西北大学, 2016.
[19]SKLAR A. Fonctions de Répartition à n Dimensions et Leurs Marges[J]. Publications de l'Institut Statistique de l'Université de Paris, 1959, 8: 229-231.
[20]EMBRECHTS P, RESNICK S I, SAMORODNITSKY G. Extreme Value Theory as a Risk Management Tool[J]. North American Actuarial Journal,1999,3(2), doi: 10.1080/10920277.1999.10595797.
[21]陈广圣. 变化环境下流域水文要素关系变异分析方法及应用[D].西安:西安理工大学,2018.
[22]刁文博. 变化环境对无定河流域水沙的影响[D].杨凌:西北农林科技大学,2013.
[23]孙桂丽,陈亚宁,李卫红,等.新疆叶尔羌河冰川湖突发洪水对气候变化的响应[J].冰川冻土,2010,32(3):580-586.
[24]张 凡,史晓楠,曾 辰,等.青藏高原河流输沙量变化与影响[J].中国科学院院刊,2019,34(11):1274-1284.
[25]王 翠,李生宇,雷加强,等.叶尔羌河流域气候变化特征及趋势分析[J].干旱区资源与环境,2018,32(1):155-160.
PDF(1786 KB)

Accesses

Citation

Detail

Sections
Recommended

/