A Discrete Element GBM Simulation Method for Meso-parameter Calibration and Granite Meso-evolution Simulation

WANG Gui-lin, WANG Run-qiu, SUN Fan

Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (1) : 86-93.

PDF(2263 KB)
PDF(2263 KB)
Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (1) : 86-93. DOI: 10.11988/ckyyb.20200917
ROCK-SOIL ENGINEERING

A Discrete Element GBM Simulation Method for Meso-parameter Calibration and Granite Meso-evolution Simulation

  • WANG Gui-lin1,2, WANG Run-qiu1,2, SUN Fan1,2
Author information +
History +

Abstract

Studying the meso-cracking evolution of rocks is of help to reveal the macro-cracking mechanism. Based on numerical simulations using block discrete element GBM (Grain Based Model), we proposed a method of calibrating mesoscopic parameters of the GBM rock specimens through analyzing the influence of inter-granular contact parameters on the rock macro-parameters under uniaxial compression tests and straight-pull tests. Using the present method, we further investigated into the evolution of transgranular cracks and grain-boundary cracks between different minerals of granite under uniaxial compression, and compared the numerical results with laboratory test results. Our findings revealed that the Poisson's ratio and elastic modulus of rock can be calibrated by using inter-granular contact stiffness, and the peak strength of rock can be calibrated by inter-granular tensile strength, cohesion and friction angle. The tensile strength of rock is affected most remarkably by the inter-granular contact tensile strength. The numerical simulation results of granite under uniaxial compression are consistent with laboratory tests: the number of transgranular cracks is significantly smaller than the number of grain-boundary cracks, and the quartz-biotite grain-boundary cracks are larger than feldspar-biotite grain-boundary cracks. In conclusion, the block discrete element GBM with improved calibration method can well simulate the behavior characteristics of grain-boundary cracks and transgranular cracks in rockmass as it considers the contact effect of bearing plate and the calibration of rock's peak strength.

Key words

rock mass / GBM / meso-parameters / calibration method / grain-boundary cracks / transgranular cracks

Cite this article

Download Citations
WANG Gui-lin, WANG Run-qiu, SUN Fan. A Discrete Element GBM Simulation Method for Meso-parameter Calibration and Granite Meso-evolution Simulation[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(1): 86-93 https://doi.org/10.11988/ckyyb.20200917

References

[1] 任建喜,葛修润. 单轴压缩岩体损伤演化细观机制及其本构模型研究[J].岩石力学与工程学报, 2001, 20(4): 425-431.
[2] 凌建明,孙 钧. 脆性岩体的细观裂纹损伤及其时效特征[J]. 岩石力学与工程学报, 1993, 12(4):304-312.
[3] 倪骁慧, 朱珍德, 赵 杰,等. 岩体破裂全程数字化细观损伤力学试验研究[J]. 岩土力学, 2009, 30(11):3283-3 290.
[4] WONG T F, WONG R H C, CHAU K T,et al. Microcrack Statistics, Weibull Distribution and Micromechanical Modeling of Compressive Failure in Rock[J]. Mechanics of Materials, 2006, 38(7): 664-681.
[5] BENEDETTI I, ALIABADI M H. A Three-dimensional Cohesive-Frictional Grain-boundary Micromechanical Model for Intergranular Degradation and Failure in Polycrystalline Materials[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 265(9): 36-62.
[6] TANG Q, XIE W, WANG X,et al. Numerical Study on Zonal Disintegration of Deep Rock Mass Using Three-dimensional Bonded Block Model[J]. Advances in Civil Engineering, 2019(8): 1-12.
[7] 刘黎旺, 李海波, 李晓锋,等.基于矿物晶体模型非均质岩石单轴压缩力学特性研究[J].岩土工程学报,2020,42(3):542-550.
[8] COWIE S,WALTON G.The Effectof Mineralogical Parameters on the Mechanical Properties of Granitic Rocks[J]. Engineering Geology, 2018, 240: 204-225
[9] ZHAO X G,WANG M J,MA L K.Damage Stress and Acoustic Emission Characteristics of the Beishan Granite[J]. International Journal of Rock Mechanics and Mining Sciences,2013,64:258-269.
[10] 梁正召. 三维条件下的岩石破裂过程分析及其数值试验方法研究[D]. 沈阳:东北大学, 2005.
[11] 朱万成,唐春安,杨天鸿,等. 岩石破裂过程分析(RFPA2D)系统的细观单元本构关系及验证[J]. 岩石力学与工程学报, 2003, 22(1):24-29.
[12] CUNDALL P A , STRACK O D L. A Discrete Numerical Modelfor Granular Assemblies[J]. Geotechnique, 1979, 29(1): 47-65.
[13] GUO N, ZHAO J. A Coupled FEM/DEM Approach for Hierarchical Multiscale Modelling of Granular Media[J]. International Journal for Numerical Methods in Engineering, 2014, 99(11): 789-818.
[14] WANG Y, MORA P. The ESyS_Particle: A New 3D Discrete Element Model with Single Particle Rotation[J]. Lecture Notes in EarthSciences, 2009, 119: 183-288.
[15] KLOSS C, GONIVA C. LIGGGHTS—Open Source Discrete Element Simulationsof Granular Materials Based on LAMMPS[C]. San Diego: TMS, 2011, doi: 10.1002/9781118062142.ch94.
[16] POTYONDY D O, CUNDALL P A. A Bonded-particle Model for Rock[J]. International Journal of Rock Mechanics and Mining Sciences 2004, 41(8): 1329-1364.
[17] CHO N, MARTIN C D, SEGO D C. A Clumped Particle Model for Rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(7): 997-1010.
[18] POTYONDY D O. A Grain-based Model for Rock: Approaching the True Microstructure[M]. Kongsberg: Norwegian Group for Rock Mechanics, 2010: 225-234.
[19] SARHOSIS V,LEMOS J V.A Detailed Micro-modelling Approach for the Structural Analysis of Masonry Assemblages[J]. Computers and Structures,2018,206(8):66-81.
[20] LI X F, LI H B, ZHAO Y. 3D Polycrystalline Discrete Element Method (3PDEM) for Simulationof Crack Initiation and Propagation in Granular Rock[J]. Computers and Geotechnics, 2017, 90(10): 96-112.
[21] LÜ Y, LI H, ZHU X,et al. Discrete Element Method Simulation of Random Voronoi Grain-based Models[J]. Cluster Computing, 2016, 20(1): 335-345.
[22] SARFARAZ H,AMINI M. Numerical Modelingof Rock Slopes with a Potential of Block-flexural Toppling Failure[J]. Journal of Mining and Environment,2020,11(1):247-259.
[23] GUI Y L,ZHAO Z Y, JI J,et al. The Grain Effect of Intact Rock Modelling Using Discrete Element Method with Voronoi Grains[J]. Géotechnique Letters, 2016, 6(2): 136-143.
[24] LI X,LI H,LI J,et al.Crack Initiation and Propagation Simulation for Polycrystalline-based Brittle Rock Utilizing Three Dimensional Distinct Element Method[C]//Rock Dynamics:From Research to Engineering,Suzhou:Chinese Acad Sci,Inst Rock & Soil Mech:Monash University,2016.
[25] WANG X, CAI M. A Comprehensive Parametric Studyof Grain-based Models for Rock Failure Process Simulation[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 115: 60-76.
[26] WANG X, CAI M. Modeling of Brittle Rock Failure Considering Inter-and Intra-Grain Contact Failures[J]. Computers and Geotechnics. 2018, 101: 224-244.
[27] GHAZVINIAN E, DIEDERICHS M S, QUEY R. 3D Random Voronoi Grain-based Models for Simulation of Brittle Rock Damage and Fabric-guided Micro-fracturing[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(6): 506-521.
[28] GAO F Q, STEAD D. The Applicationof a Modified Voronoi Logic to Brittle Fracture Modelling at the Laboratory and Field Scale[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 68: 1-14.
[29] KAZERANI T,ZHAO J.Micromechanical Parametersin Bonded Particle Method for Modeling of Brittle Material Failure[J].International Journal for Numerical and Analytical Methods in Geomechanics,2010,34(18):1877-1895.
[30] KUDO Y,SANO O,MURASHIGE N,et al. Stress-induced Crack Path in Aji Granite under Tensile Stress[J]. Pure and Applied Geophysics PAGEOPH,1992,138(4):641-656.
[31] ÜNDÜL Ö,AMANN F,AYSAL N,et al.Micro-textural Effects on Crack Initiation and Crack Propagation of Andesitic Rocks[J].Engineering Geology,2015,193:267-275.
[32] 张 帆, 郭翰群, 赵建建,等. 花岗岩微观力学性质试验研究[J].岩石力学与工程学报, 2017,36(增刊2):3864-3872.
[33] URBAN A, JAN H, JIMMY S. Characterisation of Microcracksin the Bohus Granite, Western Sweden, Caused by Uniaxial Cyclic Loading[J]. Engineering Geology, 2003,72(1): 131-142.
[34] GHASEMI S, KHAMEHCHIYAN M, TAHERI A,et al. Crack Evolution in Damage Stress Thresholds in Different Minerals of Granite Rock[J]. Rock Mechanics and Rock Engineering, 2020, 53(3): 1163-1178.
PDF(2263 KB)

Accesses

Citation

Detail

Sections
Recommended

/