Influence of Turbidity on Removing Cadmium, Lead and Arsenic in Water

LUO De-wen, WANG Ji, FENG Li-shi, PAN Chao-yi, CHANG Sha, CHEN Si-li, XIE Lei, GUO Qing-wei

Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (3) : 39-44.

PDF(1703 KB)
PDF(1703 KB)
Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (3) : 39-44. DOI: 10.11988/ckyyb.201915612021
WATER RESOURCES AND ENVIRONMENT

Influence of Turbidity on Removing Cadmium, Lead and Arsenic in Water

  • LUO De-wen1, WANG Ji2, FENG Li-shi2, PAN Chao-yi2, CHANG Sha2, CHEN Si-li2, XIE Lei1, GUO Qing-wei2
Author information +
History +

Abstract

Water body with various turbidity has some mitigating effect in treating emergent heavy metal contamination in drainage basin. In this experiment, turbidity was used as indicator to study the influence of turbidity ranging 50 NTU~650 NTU (Nephelometric Turbidity Unit) on the removal of heavy metals (cadmium, lead, and arsenic) at room temperature (25 ℃) and low temperature (5 ℃). Results suggested that sediment had the best removal effect on lead, followed by cadmium and arsenic in sequence, among which the removal rate of lead amounted to 99%. Turbidity was in a linear relationship with the highest concentration of heavy metal that could be treated to be meeting standard after treatment. At room temperature, the correlation coefficients of the highest concentration of cadmium, lead, and arsenic against turbidity were 0.996, 0.998 and 0.999 respectively, whereas at low temperature, the coefficients were 0.998, 0.996 and 0.998 respectively. Compared with low temperature, room temperature is more conducive to the removal of heavy metals cadmium, lead, and arsenic by sediment. Also at room temperature, heavy metals of high concentrations can be removed to meet the sanitary standards of drinking water.

Key words

turbidity / adsorption / cadmium / lead / arsenic / sediment / heavy metal contamination / removal rate

Cite this article

Download Citations
LUO De-wen, WANG Ji, FENG Li-shi, PAN Chao-yi, CHANG Sha, CHEN Si-li, XIE Lei, GUO Qing-wei. Influence of Turbidity on Removing Cadmium, Lead and Arsenic in Water[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(3): 39-44 https://doi.org/10.11988/ckyyb.201915612021

References

[1] XU M, HADI P, CHEN G,et al. Removal of Cadmium Ions from Wastewater Using Innovative Electronic Waste-derived Material[J]. Journal of Hazardous Materials, 2014, 273: 118-123.
[2] VALKO M, MORRIS H, CRONIN M T D. Metals, Toxicity and Oxidative Stress[J]. Current Medicinal Chemistry, 2005, 10(12): 1161-1208.
[3] 许 飘. 白腐真菌对重金属的吸附富集特性及其重金属耐受性和抗性机制研究[D]. 长沙:湖南大学, 2016.
[4] 唐行鹏, 刘宝玲, 尤 宏, 等. 流域突发性水污染事故风险分区方法研究[J]. 安全与环境学报, 2013, 13(1): 276-280.
[5] 王俊能, 赵学敏, 胡国成, 等. 广西龙江鱼类镉含量分布特征及生物积累特性分析[J]. 环境科学, 2019, 40(1): 488-495.
[6] 朱 芳.致命的铅污染[J]. 生态经济,2014,30(9):6-9.
[7] 张玉玺, 向小平, 张 英, 等. 云南阳宗海砷的分布与来源[J]. 环境科学, 2012, 33(11): 3768-3777.
[8] 郑 彤, 杜兆林, 贺玉强, 等. 水体重金属污染处理方法现状分析与应急处置策略[J]. 中国给水排水, 2013, 29(6): 18-21.
[9] 刘金燕, 刘立华, 薛建荣, 等. 重金属废水吸附处理的研究进展[J]. 环境化学, 2018, 37(9): 2016-2024.
[10] PENG L, LIU P, FENG X, et al. Kinetics of Heavy Metal Adsorption and Desorption in Soil: Developing a Unified Model Based on Chemical Speciation[J]. Geochimica et Cosmochimica Acta, 2018, 224: 282-300.
[11] HU C, ZHU P, CAI M,et al. Comparative Adsorption of Pb(II), Cu(II) and Cd(II) on Chitosan Saturated Montmorillonite: Kinetic, Thermodynamic and Equilibrium Studies[J]. Applied Clay Science, 2017, 143: 320-326.
[12] HUANG L, JIN Q, TANDON P, et al. High-resolution Insight into the Competitive Adsorption of Heavy Metals on Natural Sediment by Site Energy Distribution[J]. Chemosphere, 2018, 197: 411-419.
[13] 周 莉, 冯 胜, 李忠玉, 等. 夏季太湖浊度分布特征及其在水-沉积物界面识别中的应用[J]. 中国环境科学, 2015, 35(10): 3108-3116.
[14] 张伟超, 魏群山, 罗专溪, 等. 碱度和浊度对混凝去除磺胺甲噁唑与土霉素的影响[J]. 环境科学研究, 2015, 28(5): 802-807.
[15] 郭建宁, 张锡辉, 胡江泳, 等. 臭氧氧化对陶瓷膜超滤工艺降低饮用水中浊度的影响[J]. 环境科学学报, 2013, 33(4): 968-975.
[16] 贺建栋, 刘鹏宇, 常 青, 等. PAC与PDMDAAC复合混凝剂去除高浊度水中有机氯[J]. 中国环境科学, 2016, 36(6): 1738-1745.
[17] GB 5749—2006, 生活饮用水卫生标准[S]. 北京:中国标准出版社,2006.
[18] 黄 磊, 方红卫, 陈明洪, 等. 粘性细颗粒泥沙的表面电荷特性研究进展[J]. 清华大学学报(自然科学版), 2012, 52(6): 747-752.
[19] 肖 洋, 沈 菲, 成浩科. 泥沙吸附磷前后Zeta电位变化试验[J]. 水利水电科技进展, 2018, 38(3): 22-25,65.
[20] 夏建新, 于 良, 任华堂. 利用天然泥沙去除水体中重金属影响因素分析[J]. 应用基础与工程科学学报, 2011, 19(增刊1): 1-8.
[21] 应一梅, 李海华, 秦 馨. 静态和紊动条件下黄河泥沙对砷的吸附规律[J]. 人民黄河, 2012, 34(7): 85-86,89.
[22] 林 青, 徐绍辉. 土壤中重金属离子竞争吸附的研究进展[J]. 土壤, 2008,40(5): 706-711.
[23] 王玉军, 周东美, 孙瑞娟, 等. 土壤中铜、铅离子的竞争吸附动力学[J]. 中国环境科学, 2006,26(5): 555-559.
[24] 何宏平, 郭龙皋, 谢先德, 等. 蒙脱石等黏土矿物对重金属离子吸附选择性的实验研究[J]. 矿物学报, 1999, 12(2): 231-235.
[25] 史明明, 刘美艳, 曾佑林, 等. 硅藻土和膨润土对重金属离子Zn2+、Pb2+及Cd2+的吸附特性[J]. 环境化学, 2012, 31(2): 162-167.
PDF(1703 KB)

Accesses

Citation

Detail

Sections
Recommended

/